
Valet Parking Without a Valet
David C. Conner†, Hadas Kress-Gazit‡, Howie Choset†, Alfred A. Rizzi†, and George J. Pappas‡

†Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
‡GRASP Laboratory, University of Pennsylvania, Philadelphia, PA 19104

Email: {dcconner,choset,arizzi}@ri.cmu.edu {hadaskg,pappasg}@grasp.upenn.edu

Abstract— What would it be like if we could give our robot high
level commands and it would automatically execute them in a
verifiably correct fashion in dynamically changing environments?
This work demonstrates a method for generating continuous feed-
back control inputs that satisfy high-level specifications. Using a
collection of continuous local feedback control policies in concert
with a synthesized discrete automaton, this paper demonstrates
the approach on an Ackermann-steered vehicle that satisfies
the command “drive around until you find an empty parking
space, then park.” The system reacts to changing environmental
conditions using only local information, while guaranteeing the
correct high level behavior. The local policies consider the vehicle
body shape as well as bounds on drive and steering velocities.
The discrete automaton that invokes the local policies guarantees
executions that satisfy the high-level specification based only on
information about the current availability of the nearest parking
space. This paper also demonstrates coordination of two vehicles
using the approach.

I. INTRODUCTION

A major goal in robotics is to develop machines that perform
useful tasks with minimal supervision. Instead of specifying
each small detail, we would like to describe the high level
task, and have the system autonomously execute in a man-
ner that satisfies that desired task. Unfortunately, constraints
inherent in mobile robots, including nonlinear nonholonomic
constraints, input bounds, obstacles/body shape, and changing
environments, interact to make this a challenging problem.

This paper presents an approach that addresses this chal-
lenge by combining low-level continuous feedback control
policies with a formally correct discrete automaton. The
composition and execution strategy is guaranteed to satisfy
the high-level behavior for any initial state in the domain
of the low-level policies. The approach can handle robots
with complex dynamics as well as a variety of nonholonomic
constraints. It allows the robot to react to local information
during the execution, and supports behaviors that depend on
that information. Furthermore, given a collection of local
feedback control policies, the approach is fully automatic and
correct by construction.

The approach combines the strengths of control theo-
retic and computer science approaches. Control theoretic
approaches offer provable guarantees over local domains;
unfortunately, the control design requires a low-level speci-
fication of the task. In the presence of obstacles, designing
a global control policy becomes unreasonably difficult. In
contrast, discrete planning advances from computer science
offer the ability to specify more general behaviors and generate
verifiable solutions at the discrete level, but lack the continuous
guarantees and robustness offered by feedback.

This work is partially supported by National Science Foundation EHS
0311123 and Army Research Office MURI DAAD 19-02-01-0383.

Fig. 1. The environment has 40 parking spaces arranged around the middle
city block. The high-level specification encodes “drive around until you find a
free parking space, and then park.” This example shows the path taken from
the time the vehicle enters the area until it parks in the first open parking
space it encounters. There are four remaining open spaces.

By using a collection of local feedback control policies
that offer continuous guarantees, and composing them in a
formal manner using discrete automata, the approach automat-
ically creates a hybrid feedback control policy that satisfies a
given high-level specification without ever planning a specific
configuration space path. The system continuously executes
the automaton based on the state of the environment and the
vehicle by activating the continuous policies. This execution
guarantees the robot will satisfy its intended behavior.

As a demonstration of the general approach, this paper
presents a familiar example: a conventional Ackermann steered
vehicle operating in an urban environment. Figure 1 shows the
environment, and the results of one simulation run. This run
is a continuous execution of an automaton that satisfies the
high-level specification “drive around the environment until
you find a free parking space, and then park.” The paper
discusses the design and deployment of the local feedback
policies (Section II), the automatic generation of automata
that satisfy high level specifications (Section III), and the
continuous execution (Section IV). While there has been work
done in the past concerning a self parking car [1], and nowdays
such a car is even commerically available, this paper focuses
on the more general problem of specifying the high level
behaviors, and can capture richer and more involved tasks.

The approach to composing low-level policies is based on
our earlier work using sequential composition [2], [3]. Se-
quential composition depends on well defined policy domains
and well defined goal sets to enable tests that the goal set
of one policy is contained in the domain of another. For
idealized (point) systems, several techniques are available for
generating suitable policies [4], [5], [6], [7], [8]. This paper

L

(x, y)
θ

φ

Fig. 2. Car-like system with Ackermann Steering. The inputs are forward
velocity and steering angle velocity.

extends the prior work in sequential composition to a more
complex system model by considering Ackermann steering,
input bounds, and the shape of the vehicle.

Building upon the sequential composition [2] idea, recent
work has shown how to compose local controllers in ways
that satisfy temporal specifications given in temporal logic
[9], rather than final goals. In [10], [11], [12] powerful model
checking tools were used to find the sequence in which
the controllers must be activated in order for the system to
satisfy a high level temporal behavior. While these approaches
can capture many interesting behaviors, their fundamental
disadvantage is that they are “open loop” solutions. They find
sequences of policies to be invoked rather than an automaton,
and therefore cannot satisfy reactive behaviors that depend on
the local state of the environment, as determined at run time, or
handle uncertain initial conditions. The planning community
is dealing with “temporally extended goals” as well [13].

This work builds on the approach taken in [14] which is
based on an automaton synthesis algorithm introduced in [15].
There, an automaton was created which enabled the robot
to satisfy reactive tasks. This paper lifts several restrictions
imposed in [14]. Here the robot model is no longer an
idealized, fully actuated point robot and there is no need to
partition the workspace into polygonal cells. Furthermore, the
automaton execution is different, allowing for “interrupt” type
inputs that can induce behavior changes at any time. This
extension of [14] allows one to specify “safety critical” tasks
such as emergency stop. This paper also allows for uncertainty
in the initial position of the vehicle, represented as a set of
initial conditions rather than a single one.

II. LOCAL CONTINUOUS FEEDBACK CONTROL POLICIES

Local continuous feedback control policies form the foun-
dation of the control framework; the policies are designed to
provide guaranteed performance over a limited domain. Using
continuous feedback provides robustness to noise, modeling
uncertainty, and disturbances. This section presents the system
model used in the control design, the formulation of the local
policies, and the method of deployment.

A. System Modeling

This paper focuses on the control of a rear-wheel drive car-
like vehicle with Ackermann steering, shown schematically in
Figure 2. The two rear wheels provide the motive force via
traction with the ground; the two front wheels provide steering.

The vehicle pose, g, is represented as g = {x, y, θ}; (x, y)
is the location of the midpoint of the rear axle with respect to
a global coordinate frame, and θ is the orientation of the body
with respect to the global x-axis. The angle of the steering
wheel is φ ∈ (−φmax, φmax), a bounded interval.

The nonholonomic constraints inherent in the rolling con-
tacts uniquely specify the equations of motion via a non-linear
relationship between the input velocities and the body pose
velocity. Let the system inputs be u = {v, ω} ∈ U , where U
is a bounded subset of IR2, v is the forward velocity, and ω
is the rate of steering. The complete equations of motion are⎡

⎢⎣
ẋ
ẏ

θ̇

φ̇

⎤
⎥⎦ =

⎡
⎢⎣

cos θ 0
sin θ 0

1
L tan φ 0

0 1

⎤
⎥⎦

[
v
ω

]
(1)

The system evolution is also subject to configuration con-
straints. The body pose is constrained by the interaction of
body shape with obstacles in the environment. The pose is
further constrained by local conventions of the road, such as
driving in the right lane. For safety and performance reasons,
we allow further steering angle constraints at higher speeds.
The system inputs are constrained based on speed limits in the
environment and system capabilities.

B. Local Policy Development

The hybrid control framework uses local feedback control
policies to guarantee behavior over a local domain. These local
policies are then composed in a manner that allows reasoning
on a discrete graph to determine the appropriate policy order-
ing that induces the desired global behavior. In order for the
policies to be composable in the hybrid control framework,
the individual policies must satisfy several requirements: i)
domains lie completely in the free configuration space of
the system, ii) under influence of a given policy the system
trajectory must not depart the domain except via a specified
goal set, iii) the system must reach the designated goal set in
finite time, and iv) the policies must have efficient tests for
domain inclusion given a known configuration [3]. This paper
focuses on one design approach that satisfies these properties.

The navigation tasks are defined by vehicle poses that must
be reached or avoided; therefore, this paper defines cells in the
vehicle pose space. Each cell has a designated region of pose
space that serves as the goal set. Over each cell, we define a
scalar field that specifies the desired steering angle, φdes, such
that steering as specified induces motion that leads to the goal
set.

The approach to defining the cell boundary and desired
steering angle is based on a variable structure control ap-
proach [16]. The cells are parameterized by a path segment
in the workspace plane, as shown in Figure 3-a. The path is
lifted to a curve in body pose space by considering the path
tangent vector orientation as the desired orientation. One end
of the curve serves as the goal set center.

To perform the control calculations, the body pose is trans-
formed to a local coordinate frame assigned to the closest point
on the path to current pose. The policy defines a boundary
in the local frames along the path. Figure 3-b shows the cell
boundary defined by the local frame boundaries along the path;
the interior of this ‘tube’ defines the cell. The size of the tube
can be specified subject to constraints induced by the path
radius of curvature and the vehicle steering bounds. The cell
can be tested for collision with an obstacle using the technique
outlined in [3].

We define a surface in the local frame to serve as a
“sliding surface” for purposes of defining a desired steering
angle [16]. To generate a continuous steering command, the

2

(a) (b)

Fig. 3. Control policy based on [16]: a) workspace path with local frame
defined, b) the cell boundary forms a “tube” around the curve in pose space.
The sliding surface is shown in the cell interior.

sliding surface is defined as a continuous function with a
continuous bounded derivative; a blending zone is defined
around the sliding surface. Outside the blending zone, the
desired steering is set to a steering limit, φlim, where |φlim |≤
φmax. The sign of φlim depends on the current direction of
travel (forward/reverse) and whether the current body pose in
local coordinates is above or below the sliding surface. Inside
the blending zone, let

φdes = ηφlim + (1 − η)φref , (2)

where η ∈ [0, 1] is a continuous blending function based
on distance from the sliding surface, and φref is the steering
command that would cause the system to follow the sliding
surface. Thus, (2) defines a mapping from the body pose space
to the desired steering angle for any point in the cell. The
sliding surface is designed such that steering according to φdes

will cause the system to move toward the sliding surface, and
then along the sliding surface toward the specified curve in
the desired direction of travel. At the boundary of the cell,
the desired steering must generate a velocity that is inward
pointing, which constrains the size and shape of a valid cell.

For a closed-loop policy design, the system must steer fast
enough so that the steering angle converges to the desired
steering angle faster than the desired steering angle is chang-
ing. This induces an additional constraint on the input space.
Given this constraint, a simple constrained optimization is used
to find a valid input. Each policy is verified to insure that a
valid input exists over its entire domain.

The vehicle closed-loop dynamics over the cell induce a
family of integral curves that converge to the curve specifying
the policy. To guarantee that an integral curve never exits the
cell during execution, we impose one additional constraint.
Define the steering margin, φmargin, as the magnitude of the
angle between the desired steering along the cell boundary and
the steering angle that would allow the system to depart the
cell. During deployment, the policies must be specified with a
positive steering margin. To use the control policy, we require
that |φdes−φ |< φmargin; otherwise, the system halts and steers
toward the desired steering angle until |φdes − φ |≤ φmargin.
Invoking the policies this way guarantees that the system never
departs the cell, except via the designated goal set; that is, the
policy is conditionally positive invariant [3]. As the vehicle
never stops once the steering policy becomes active, the system
reaches the designated goal in finite time.

C. Local Policy Deployment

To set up the basic scenario, we define the urban parking
environment shown in Figure 1. The regularity of the environ-
ment allows an automated approach to policy deployment.

Fig. 4. Parking behavior induced by the composition of local policies. The
feedback control policies guarantee the safety of the maneuver.

First, we specify a cache of local policies using the generic
policy described above. The cache uses a total of 16 policies:
a policy for normal traffic flow, four policies associated with
left and right turns at the intersections, six policies associated
with parking, and five associated with leaving a parking space.
Ten of the policies move the vehicle forward, and six move the
vehicle in reverse. Each policy in the cache is defined relative
to a common reference point. At this point, the specification
of the free parameters for each policy in the cache is a trial
and error process that requires knowledge of the environment,
the desired behaviors, and some engineering intuition. During
specification of the policies, we verify that the convergence
and invariance properties are satisfied, and that the policies
are free of obstacle collision based on the road layout.

Policies from the cache are then instantiated at grid points
defined throughout the roadways. This is done offline based
on knowledge of the local roadways. The instantiation process
selects a subset of the policies in the cache based on the
grid point location. Given the cache and specified grid points,
the instantiation process is automated. Normally, the test
for obstacle collision would be conducted as the policies
are deployed, but the regularity of the roadway renders this
unnecessary. For intersections, the four turning policies are
deployed for each travel direction, along with the basic traffic
flow policy. For straight traffic lanes, the grid points lie in the
middle of the traffic lanes aligned with the front of the parking
space markers; orientation is defined by the traffic flow.

If a potential parking space is adjacent to the grid point, a
special parking policy is instantiated. Although considered a
single policy by the automaton, each parking policy is actually
composed of several policies from the cache. The parking
component policies are only instantiated if the parking behav-
ior is invoked by the global parking automaton (Section III);
at this point execution control switches to a local parking
controller encoded as a partial order of the parking policies.
Figure 4 shows an example parking maneuver induced by the
composition of the local feedback control policies. For the
region defined in Figure 1, there are a total of 306 instantiated
policies, including 40 parking policies associated with the 40
possible parking spaces.

As part of the instantiation process, we test for goal set
inclusion pairwise between policies. If the goal set of one
policy is contained in the domain of a second, the first is said to
prepare the second [2]. This pairwise test defines the prepares
graph, which encodes the discrete transition relation between
policies. This graph forms the foundation of the automaton
synthesis approach described in the next section. The policies
in the cache are specially defined so that policies instantiated
at neighboring grid points prepare one another appropriately.
The policy specification, instantiation, and prepares testing is
done off-line, prior to automaton synthesis.

3

III. AUTOMATON SYNTHESIS

This section describes the method used to create the au-
tomaton that governs the local policies’ switching strategy.
This automaton is guaranteed to produce paths, if they exist,
that satisfy a given specification.

A. The Synthesis Algorithm

We are given a set of binary inputs (e.g. whether the closest
parking spot is empty), a set of outputs (e.g. whether or not
to activate policy Φi), and a desired relationship between
the two (e.g.“if you sense an empty parking space, invoke a
parking policy”). The realization or synthesis problem consists
of constructing a system that controls the outputs such that all
of its behaviors satisfy the given relationship, or determine
that such a system does not exist.

When the relationship is given in Linear Temporal Logic
(LTL) [9], it is proven that the complexity of the synthesis
problem is doubly exponential in the size of the formula
[17]. However, by restricting ourselves to a subset of LTL, as
described in Section III-B, we can use the efficient algorithm
recently introduced in [15]. This algorithm is polynomial in the
number of possible states. We present an informal overview of
the algorithm, and refer the reader to [15] for a full description.

The synthesis process is viewed as a game played between
the system, which controls the outputs, and the environment
which controls the inputs. The two players have initial con-
ditions and a transition relation defining the moves they can
make. The winning condition for the game is a formula σ
encoded with a fragment of LTL. The way the game is played
is that at each step, first the environment makes a transition
according to its transition relation, and then the system makes
its own transition (constraints on the system transitions include
obeying the prepares graph). If the system can satisfy σ no
matter what the environment does, we say that the system
is winning and we can extract an automaton. However, if
the environment can falsify σ we say that the environment
is winning and the desired behavior is unrealizable.

The synthesis algorithm [15] takes the initial conditions,
transition relations, and winning condition, then checks
whether the specification is realizable. If it is, the algorithm
extracts a possible, but not necessarily unique, automaton that
implements a strategy that the system should follow in order
to satisfy the desired behavior.

B. Writing Logic formulas

In this work we use Linear Temporal Logic (LTL) formulas.
We refer the reader to [9] for a formal description of this
logic. Informally, these logic formulas are built using a set of
boolean propositions, the regular boolean connectives ‘not’(¬),
‘and’(∧), ‘or’ (∨) and temporal connectives. The temporal
connectives include: ‘next’ (©), ‘always’ (�) and ‘eventually’
(�). These formulas are interpreted over infinite sequences of
truth assignments to the propositions. For example, the formula
©(p) is true if in the next position p is true. The formula
�(q) is true if q is true in every position in the sequence. The
formula ��(r) is true if always eventually r is true, that is,
if r is true infinitely often.

The input to the algorithm is an LTL formula

ϕ = (ϕe ⇒ ϕs) .

ϕe is an assumption about the inputs, and thus about the
behavior of the environment, and ϕs represents the desired

behavior of the system. More specifically,

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g ; ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g

ϕe
i and ϕs

i describe the initial condition of the environment
and the system. ϕe

t represents the assumptions on the environe-
ment by constraining the next possible input values based on
the current input and output values. ϕs

t constrains the moves
the system can make and ϕe

g and ϕs
g represent the assumed

goals of the environment and the desired goals of the system,
respectively. For a detailed description of these formulas the
reader is referred to [14].

Translating this formula to a game, the initial condition is
ϕe

i ∧ ϕs
i , the transition relations for the players are ϕe

t and
ϕs

t , and the winning condition is σ = (ϕe
g ⇒ ϕs

g). Note
that there are two “ways” for the system to win. It wins if
either ϕs

g is satisfied, i.e. the system reaches its goals, or
ϕe

g is falsified. The later case implies that if the environment
does not satisfy its goals (either a faulty environment or the
system interfered), then a correct behavior of the system is no
longer guaranteed. Furthermore, if during an execution of the
automaton the environment violates its own transition relation,
the automaton is no longer valid. The implication of this is
discussed in Section IV.

C. Parking formula

In our basic scenario, a vehicle is searching for an empty
parking space, and parks once it finds one; therefore we define
one input, ‘park’, which becomes true when an empty parking
space is found. The policy, Φi, to be activated is an output1.

1) Assumptions on the environment: Initially there is no
parking near the vehicle therefore ϕe

i = ¬park.
We can only determine whether there is a free parking space

if we are in a policy next to it. This means that ‘park’ cannot
become true if the vehicle is not next to a parking space or
in one. Also, for implementation reasons, we assume that the
input ‘park’ remains true after parking.

ϕe
t =

⎧⎪⎨
⎪⎩

�([(¬(∨i∈ParkPolicyΦi)) ∧
(¬(∨j∈PreparesParkPolicyΦj))]
⇒ ¬© park)∧

�((park ∧ (∨i∈ParkPolicyΦi)) ⇒ ©park)

We have no assumptions on the infinite behavior of the
environment (we do not assume there is an empty parking
spot), therefore ϕe

g = ��(TRUE).
2) Constraints on the behavior of the vehicle (system):

Initially the vehicle must be in the domain of an initial policy,
ϕs

i = ∨i∈InitialPolicyΦi.
The allowable transitions are encoded as

ϕs
t =

⎧⎨
⎩

∧
i �(Φi ⇒ (©Φi ∨j∈SuccessorsOfPolicyi ©Φj))∧
i∈ParkPolicy �(¬© park ⇒ ¬© Φi)∧
�(©park ⇒ (∨i∈ParkPolicy © Φi))

The first line encodes the transitions of the prepares graph from
Section II-C. The vehicle cannot park if there is no parking
space available, as indicated by the ‘park’ input on the second
line. The third line states that if there is an empty parking
space, it must park; removing this line may allow the vehicle
to pass an open spot before parking. Additional outputs can
be added to the transition relation. For example, policies that

1For ease of reading, we define a different output for each policy. In the
actual implementation we encode the policy numbers as binary vectors.

4

cause left or right turns can trigger appropriate signals. The
initial signal status should also be set in ϕs

i .
Finally for the goal, we add a list of policies the vehicle

must visit infinitely often if it has not parked yet, thus ϕs
g =

∧i∈V isitPolicy��(Φi ∨ park). These policies define the area
in which the vehicle will look for an available parking space.
Note that the goal condition is true if either the vehicle visits
these policies infinitely often (when there is no parking space
available) or it has parked.

IV. CONTINUOUS EXECUTION OF DISCRETE AUTOMATA

The synthesis algorithm of Section III-A generates an
automaton that governs the execution of the local policies;
however, the continuous evolution of the system induced by
the local policies governs the state transitions within the
automaton. In this section, we discuss the implementation of
the policy switching strategy.

A. Execution

A continuous execution of the synthesized automaton begins
in an initial state q0 that is determined by linearly searching
the automaton for a valid state according to the initial body
pose of the vehicle. From state qi, at each time step2, the
values of the binary inputs are evaluated. Based on these
inputs, all possible successor states are determined. If the
vehicle is in the domain of policy Φl, which is active in a
successor state qj , the transition is made. Otherwise, if the
vehicle is still in the domain of Φk, which is active in state
qi, the execution remains in this state. The only case in which
the vehicle is not in the domain of Φk, or in any successor
Φl, is if the environment behaved “badly.” It either violated
it’s assumptions, thus rendering the automaton invalid or it
caused the vehicle to violate the prepares graph (e.g. a truck
running into the vehicle). In the event that a valid transition
does not exist, the automaton executive can raise an error flag,
thereby halting the vehicle and requesting a new plan. This
continuous execution is equivalent to the discrete execution of
the automaton [10], [12].

B. Guarantees of correctness

We have several guarantees of correctness for our system,
starting from the high level specifications and going down to
the low level controls. First, given the high level specification
encoded as an LTL formula, the synthesis algorithm reports
whether the specification is realizable or not. If an inconsistent
specification is given, such as, “always keep moving and if you
see a stop light stop,” the algorithm will return that there is
no such system. Furthermore, if a specification requires an
infeasible move in the prepares graph, such as “always avoid
the left north/south road and eventually loop around all the
parking spaces,” the algorithm will report that such a system
does not exist.

Second, given a realizable specification, the algorithm is
guaranteed to produce an automaton such that all its executions
satisfy the desired behavior if the environment behaves as
assumed. The construction of the automaton is done using
ϕe

t which encodes admissible environment behaviors; if the
environment violates these assumptions, the automaton is no
longer correct. The automaton state transitions are guaranteed

2The policies are designed as continuous control laws; however, the
implementation on a computer induces a discrete time step. We assume the
time step is short compared to the time constant of the closed-loop dynamics.

to obey the prepares graph by the low-level control policy
deployment unless subject to a catastrophic disturbance (e.g.,
an out of control truck). Modulo a disconnect between ϕ e

t
and the environment, or a catastrophic disturbance to the con-
tinuous dynamics, our approach leads to a correct continuous
execution of the automaton that satisfies the original high level
desired behavior.

V. RESULTS

The approach is verified in a simulation executed using
MATLABTM. First, the workspace is laid out, and a cache
of policies is specified. Second, the policies are automatically
instantiated in the configuration space of the vehicle, and
the prepares graph is defined. Next, based on the desired
scenario, an LTL formula is written. The LTL formula is then
given to the automatic synthesis algorithm implemented by
Piterman, Pnueli and Sa’ar [15] on top of the TLV system
[18]. At this point, the resulting automaton is used to govern
the execution of the local policies, based on the local behavior
of the environment.

In the following examples, the workspace is the one shown
in Figure 1, with the 306 policies instantiated as described in
Section II-C. In the LTL formulas, the visit policies correspond
to the 8 lanes around the parking spaces (4 going clockwise
and 4 going counter clockwise), and the initial policies corre-
spond to the 10 entry points to the workspace. Initially, 35 of
the 40 parking spaces were randomly specified as occupied.

A. Basic parking scenario

The basic parking scenario corresponds to the LTL formula
described in Section III-C. For each run, a new vehicle was
introduced at a random entrance, while the parking spaces
were filled according to the previous run. As the automaton
executes, if a parking policy is a successor to the current
state, the empty/occupied status is checked via a local sensor.
This work does not address the required sensor, but assumes
a binary output. Transition to the parking policy is enabled
if the associated space is empty. If the transition is enabled,
other transitions are disabled until the vehicle pose enters the
domain of the parking policy, at which point the control shifts
to the local parking controller.

Six runs were simulated using the global parking automaton;
Figure 5 shows the results for two of these runs. In Run #4 the
vehicle parks in the first available parking space. In Run #6,
there are no parking spaces available; therefore, the vehicle
continues to circle past every possible parking space, waiting
on another vehicle to leave.

B. Hazard

To provide more expressive behavior, we define an ad-
ditional input ‘hazard’ that allows the vehicle to react to
external changes in the environment not encoded in the instan-
tiated policies. These hazards could include blocked roads or
pedestrians detected using a proximity sensor or vision based
system. We allow the input ‘hazard’ to change at any time
and we require the vehicle to stop when ‘hazard’ is true, thus
interrupting the execution of the feedback control policy. Once
‘hazard’ becomes false again, the vehicle resumes moving
under feedback control. We do not show the exact additions
to the basic formula due to space constraints.

To demonstrate this capability, we encoded a timed ‘stop-
light’ at the intersections, and rewarded vehicle #6’s patience

5

Run #4 Run #6
Fig. 5. Two executions of the basic scenario. The initial conditions for each
run are circled. The first five executions successfully find a parking space; the
last execution continues to loop as no parking spaces are available.

Run #7 - a Run #7 - b
Fig. 6. Two snap shots of the multiple vehicle scenario. The vehicle heading
east stops in response to the timed hazard signal to allow the other vehicle to
travel through the intersection.

by having one vehicle leave its parking space and exit the area.
The leaving behavior is encoded as a new automaton with an
exit path as its goal. The ‘stop-light’ behavior is coded with
an external timer that raises a hazard flag with policies that
enter an intersection in a particular direction. When the timer
expires, the hazard flag is raised for the crossing lanes, and
after another brief period the original hazard flags are lowered
allowing the vehicles to cross. The cycle repeats periodically.

Figure 6 shows the continuation of Run #6 with the hazard
inputs added to the parking automaton, and a ‘leaving automa-
ton’ with hazards added to control the second vehicle. This
gives a rudimentary form of multi-vehicle coordination. In the
first snapshot, vehicle #6 is just beginning to approach the
intersection, while vehicle #7 stops for the light. The second
snapshot shows vehicle #7 dutifully waiting for the signal,
while vehicle #6 has passed through the intersection. Although
not shown, after the ‘stop-light’ changes, vehicle #7 exits the
area and vehicle #6 continues around under the control of the
global parking automaton and parks in the newly open spot.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have demonstrated, through the parking
example, how high level specifications containing multiple
temporally dependent goals can be given to a realistic robot,
which in turn automatically satisfies them. We synthesized an

automaton that forces the vehicle to park, turns the vehicle
signal lights on and off appropriately, and obeys hazard
conditions. By switching between low level feedback control
policies and moving in a “well behaved” environment, the
correctness of the robot’s behavior is guaranteed by the
automaton. The system satisfies the high-level specification
without needing to plan the low-level motions in configuration
space.

We plan to extend this work in several directions. At
the low level, we wish to consider more detailed dynamics.
At the high level, we intend to formally address multiple
robot coordination with more complex traffic conditions, and
formally verify that the system avoids deadlock. Our research
also focuses on accessible specification languages such as
some form of natural language. We are currently running
experiments with a real system to demonstrate the ideas shown
in this paper.

REFERENCES

[1] I. Paromtchik, P. Garnier, and C. Laugier, “Autonomous maneuvers of
a nonholonomic vehicle,” in International Symposium on Experimental
Robotics, Barcelona , Spain, 1997.

[2] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential compo-
sition of dynamically dexterous robot behaviors,” International Journal
of Robotics Research, vol. 18, no. 6, pp. 534–555, 1999.

[3] D. C. Conner, H. Choset, and A. A. Rizzi, “Integrated planning and
control for convex-bodied nonholonomic systems using local feedback
control policies,” in Proceedings of Robotics:Science and Systems II,
Philadelphia, PA, 2006.

[4] A. A. Rizzi, “Hybrid control as a method for robot motion program-
ming,” in IEEE International Conference on Robotics and Automation,
vol. 1, May 1998, pp. 832 – 837.

[5] D. C. Conner, A. A. Rizzi, and H. Choset, “Composition of local
potential functions for global robot control and navigation,” in IEEE/RSJ
Int’l. Conf. on Intelligent Robots and Systems, Las Vegas, NV, October
2003, pp. 3546 – 3551.

[6] L. Yang and S. M. Lavalle, “The sampling-based neighborhood graph:
An approach to computing and executing feedback motion strategies,”
IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 419–
432, June 2004.

[7] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Transactions
on Robotics, vol. 21, no. 5, pp. 864–874, October 2005.

[8] S. R. Lindemann, I. I. Hussein, and S. M. LaValle, “Realtime feed-
back control for nonholonomic mobile robots with obstacles,” in IEEE
Conference on Decision and Control, San Diego, CA, 2006.

[9] E. A. Emerson, “Temporal and modal logic,” in Handbook of theoretical
computer science (vol. B): formal models and semantics. Cambridge,
MA, USA: MIT Press, 1990, pp. 995–1072.

[10] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in IEEE International Conference
on Robotics and Automation, 2005, pp. 2020–2025.

[11] G. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers for
path planning: A temporal logic approach,” in IEEE Conference on
Decision and Control, Seville, Spain, 2005.

[12] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from LTL specifications,” in 9th International Workshop
on Hybrid Systems: Computation and Control, Santa Barbara, California,
2006.

[13] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, , and P. Traverso, “MBP
: A model based planner,” in In Proc. IJCAI’01 Workshop on Planning
under Uncertainty and Incomplete Information, 2001.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Where’s waldo?
sensor-based temporal logic motion planning,” in IEEE International
Conference on Robotics and Automation, 2007, pp. 3116–3121.

[15] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1) Designs,”
in VMCAI, Charleston, SC, Jenuary 2006, pp. 364–380.

[16] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino, “Path tracking
control for Dubin’s car,” in IEEE International Conference on Robotics
and Automation, Minneapolis, MN, 1996, pp. 3123–3128.

[17] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM Press, 1989, pp. 179–
190.

[18] A. Pnueli and E. Shahar, “The TLV system and its applications,” 1996.
[Online]. Available: http://www.cs.nyu.edu/acsys/tlv/

6

