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a b s t r a c t

In this paper, we address the temporal logic motion planning problem for mobile robots that are modeled
by second order dynamics. Temporal logic specifications can capture the usual control specifications
such as reachability and invariance as well as more complex specifications like sequencing and obstacle
avoidance. Our approach consists of three basic steps. First, we design a control law that enables the
dynamic model to track a simpler kinematic model with a globally bounded error. Second, we built a
robust temporal logic specification that takes into account the tracking errors of the first step. Finally,
we solve the new robust temporal logic path planning problem for the kinematic model using automata
theory and simple local vector fields. The resulting continuous time trajectory is provably guaranteed to
satisfy the initial user specification.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One of the main challenges in robotics is the development of
mathematical frameworks that formally and verifiably integrate
high level planning with continuous control primitives. Tradition-
ally, the path planning problem for mobile robots has considered
reachability specifications of the form ‘‘move from the Initial po-
sition I to the Goal position G while staying within region R’’.
The solutions to this well-studied problem span a wide variety of
methods, from continuous (such as potential or navigation func-
tions (Choset et al., 2005, Section 4)) to discrete (such as Canny’s
algorithm, Voronoi diagrams, cell decompositions and probabilis-
tic roadmaps (Choset et al., 2005; LaValle, 2006)).
Whereas these methods solve the basic path planning problem,

they do not address high level planning issues that arise when
one considers a number of goals or a particular ordering of them.
In order to manage such constraints, one should employ one of
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the existing high level planning methods (LaValle, 2006). Even
though the aforementioned methods can handle partial ordering
of goals, they cannot deal with temporally extended goals. For such
specifications, planning techniques (De Giacomo & Vardi, 1999)
that are based on model checking (Clarke, Grumberg, & Peled,
1999) seem to be a better choice. Using temporally extended goals,
onewould sacrifice some of the efficiency of the standard planning
methods for expressiveness in the specifications. Temporal logics
such as Linear Temporal Logic (LTL) (Pnueli, 1977) and its
continuous time version propositional temporal logic over the
reals (RTL) (Reynolds, 2001) have the expressive power to describe
a conditional sequencing of goals under a well-defined formal
framework.
Such a formal framework can provide us with the tools

for automated controller synthesis and code generation. Beyond
the provably correct synthesis of hybrid controllers for path
planning from high level specifications, temporal logics have one
more potential advantage when compared to other formalisms,
e.g., regular languages (Koutsoukos, Antsaklis, Stiver, & Lemmon,
2000). That is to say, temporal logics were designed to bear a
resemblance to natural language. Along the same lines, one can
develop computational interfaces between natural language and
temporal logics (Kress-Gazit, Fainekos, & Pappas, 2007). This fact
alone makes temporal logics a suitable medium for our daily
discourse with future autonomous agents.
In our previous work (Fainekos, Kress-Gazit, & Pappas, 2005),

we have combined such planning frameworks with local
controllers defined over convex cells (Belta, Isler, & Pappas, 2005;
Conner, Rizzi, & Choset, 2003) in order to perform temporal logic
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motion planning for a fully actuated kinematicsmodel of a robot. In
a kinematics model, the control inputs to the system are actually
the desired velocities. However, when the velocity of the mobile
robot is high enough, a kinematics model is not enough any more,
necessitating thus the development of a framework that can han-
dle a dynamics model. In a dynamics model, as opposed to a kine-
matics model, the control inputs are the forces (or accelerations)
that act upon the system. In this paper, we provide a tractable so-
lution to the RTLmotion planning problem for dynamics models of
mobile robots.

2. Problem description

We consider a mobile robot which is modeled by the second
order systemΣ (dynamics model):

ẍ(t) = u(t), t ≥ 0, x(0) ∈ X0, ẋ(0) = 0,

x(t) ∈ X, u(t) ∈ U = {µ ∈ R2 | ‖µ‖ ≤ umax}
(1)

where x(t) ∈ X is the position of the robot in the plane, X ⊆ R2
is the free workspace of the robot and X0 ⊆ X is a compact set
that represents the set of initial positions. Note that the robot is
initially at rest, i.e., ẋ(0) = 0, and that the acceleration bound
umax > 0 models the constraints on the control input u(t) (forces
or acceleration). Here, ‖ · ‖ is the Euclidean norm.
The goal of this paper is to construct a hybrid controller

that generates control inputs u(t) for system Σ so that for
the set of initial states X0, the resulting motion x(t) satisfies a
formula specification φ in the propositional temporal logic over
the reals (Reynolds, 2001). Following Reynolds (2001), we refer to
this logic as RTL. For the high level planning problem, we consider
the existence of a number of regions of interest to the user. Such
regions could be rooms and corridors in an indoor environment
or areas to be surveyed in an outdoor environment. Let Π =

{π0, π1, . . . , πn} be a finite set of symbols that label these areas.
The denotation [[·]] : Π → P (X) of each symbol inΠ is a subset of
X , i.e., for any π ∈ Π we have [[π ]] ⊆ X . Here, P (Γ ) denotes the
powerset of a set Γ . We reserve the symbol π0 to model the free
workspace of the robot, i.e., [[π0]] = X .
In order to make apparent the use of RTL for the composition

of motion planning specifications, we first give an informal
description of the traditional and temporal operators. The formal
syntax and semantics of RTL are presented in Section 3. RTL
formulas are built over a set of propositions, the set Π in our
case, using combinations of the traditional and temporal operators.
Traditional logic operators are the conjunction (∧), disjunction (∨)
and negation (¬). Some of the temporal operators are eventually
(�), always (�), until (U) and release (R). The propositional
temporal logic over the reals can describe the usual properties of
interest for control problems, i.e., reachability (�π ) and safety: (�π
or �¬π ). Beyond the usual properties, RTL can capture sequences
of events and infinite behaviors. For example:

• Reachability while avoiding regions: The formula¬(π1∨π2∨
· · · ∨ πn)Uπn+1 expresses the property that the sets [[πi]] for
i = 1, . . . , n should be avoided until [[πn+1]] is reached.
• Sequencing: The requirement that we must visit [[π1]], [[π2]]
and [[π3]] in that order is captured by the formula �(π1∧�(π2∧
�π3)).
• Coverage: Formula �π1 ∧ �π2 ∧ · · · ∧ �πn reads as the
system will eventually reach [[π1]] and eventually [[π2]] and
. . . eventually [[πn]], requiring the system to eventually visit all
regions of interest without imposing any ordering.
• Recurrence (Liveness): The formula �(�π1 ∧�π2 ∧ · · · ∧ �πn)
requires that the trajectory does whatever the coverage does
and, in addition, will force the system to repeat the desired
objective infinitely often.
Fig. 1. The simple environment of Example 1. The four regions of interest
π1, π2, π3, π4 are enclosed by the polygonal region labeled by π0 .

More complicated specifications can be composed from the
basic specifications using the logic operators. In order to better
explain the different steps in our framework, we consider
throughout the paper the following example.

Example 1. Consider a robot that is moving in a convex polyg-
onal environment π0 with four areas of interest denoted by
π1, π2, π3, π4 (see Fig. 1). Initially, the robot is placed somewhere
in the region labeled by π1 and its velocity is set to zero. The robot
must accomplish the following task: ‘‘Visit area [[π2]], then area
[[π3]], then area [[π4]] and, finally, return to and stay in region [[π1]]
while avoiding areas [[π2]] and [[π3]]’’. Also, it is implied that the
robot should always remain inside the free workspace X , i.e., re-
gion [[π0]], and that X0 = [[π1]].

In this paper, for such specifications, we provide a computa-
tional solution to the following problem.

Problem 2. Given the systemΣ and an RTL formula φ, construct a
hybrid controller Hφ forΣ such that the trajectories of the closed-
loop system satisfy formula φ.

We propose a hierarchical synthesis approachwhich consists of
three components: tracking control using approximate simulation
relations (Girard & Pappas, 2006), robust satisfaction of RTL
formulas (Fainekos, Girard, & Pappas, 2007) and hybrid control for
motion planning (Fainekos et al., 2005). First,Σ is abstracted to the
first order systemΣ ′ (kinematics model):

ż(t) = v(t), t ≥ 0, z(0) ∈ Z0,

z(t) ∈ Z, v(t) ∈ V = {ν ∈ R2 | ‖ν‖ ≤ vmax}
(2)

where z(t) ∈ Z is the position of the robot in the kinematicsmodel,
Z ⊆ R2 is a modified free workspace, Z0 = X0 is the set of possible
initial positions and vmax > 0 is a velocity bound on the control
input values v(t). Using the notion of approximate simulation
relation, we evaluate the precision δ with which the system Σ is
able to track the trajectories of the abstraction Σ ′ and design a
continuous tracking controller that we call interface. Second, from
the RTL formula φ and the precision δ, we derive a more robust
formulaφ′ such that if a trajectory z satisfiesφ′, then any trajectory
x remaining at time t within distance δ from z(t) satisfies formula
φ. Thirdly, we design a hybrid controller H ′

φ′
for the abstraction

Σ ′, so that the trajectories of the closed-loop system satisfy the
formula φ′. Finally, by putting these three components together, as
shown in Fig. 2,we design a hybrid controllerHφ solving Problem2.
In the following, we detail each step of our approach.
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Fig. 2. Hierarchical architecture of the hybrid controller Hφ .

3. Propositional temporal logic over the reals

Physical processes, such as the motion of a robot, evolve in
continuous time. As such, it is more intuitive for the user to state
the desired robotic behavior using temporal logicswith underlying
continuous time semantics (Reynolds, 2001) instead of discrete
ones (Pnueli, 1977). In this paper, we advocate the applicability
of the propositional temporal logic over the reals with the until
connective (RTL) (Reynolds, 2001) as a natural formalism for a
motion planning specification language. First, we introduce the
syntax of RTL formulas in Negation Normal Form (NNF) (Clarke
et al., 1999, Section 9.4).

Definition 3 (RTL/LTL Syntax). The set ΦΠ of all well-formed
formulas (wff) over the set of atomic propositionsΠ is constructed
using the grammar

φ ::= > | ⊥ | π | ¬π | φ ∨ φ | φ ∧ φ | φUφ | φRφ

where π ∈ Π and >, ⊥ are the Boolean constants true and false
respectively. If the rule¬π is dropped from the grammar, then no
negation operator appears in a formula and the set ofwff is denoted
byΦ+Π .

Formally, the semantics of RTL formulas is defined over contin-
uous time Boolean signals. Here, we instantiate the definitions of
the semantics over abstractions of the trajectories of the systemΣ
with respect to the sets [[π ]] for all π ∈ Π . Let (x, [[·]]) |H φ denote
the satisfaction of the RTL formula φ over the trajectory x starting
at time 0 with respect to the atomic proposition mapping [[·]]. If x
does not satisfy φ under the map [[·]], then we write (x, [[·]]) 6|H φ. If
all the trajectories x of the systemΣ driven by a hybrid controller
H and associated to an initial state in X0 are such that (x, [[·]]) |H φ,
then we write ([Σ,H], [[·]]) |H φ and we say that [Σ,H] satisfies
φ. In the following, given any function f from some time domain T
(e.g., R or N) to some set X, we define f |t for t ∈ T to be the t time
shift of f with definition f |t(t ′) = f (t + t ′) for t ′ ∈ T.

Definition 4 (RTL Semantics). Let x be a trajectory of Σ . The
semantics of any formula φ ∈ ΦΠ can be recursively defined as:

(x, [[·]]) |H >, (x, [[·]]) 6|H ⊥
(x, [[·]]) |H π iff x(0) ∈ [[π ]]
(x, [[·]]) |H ¬π iff x(0) 6∈ [[π ]]
(x, [[·]]) |H φ1 ∨ φ2 iff (x, [[·]]) |H φ1 or (x, [[·]]) |H φ2
(x, [[·]]) |H φ1 ∧ φ2 iff (x, [[·]]) |H φ1 and (x, [[·]]) |H φ2
(x, [[·]]) |H φ1Uφ2 iff ∃t ≥ 0 such that (x|t , [[·]]) |H φ2
and ∀t ′ with 0 ≤ t ′ < t we have (x|t ′ , [[·]]) |H φ1

(x, [[·]]) |H φ1Rφ2 iff ∀t ≥ 0 we have (x|t , [[·]]) |H φ2
or ∃t ′ such that 0 ≤ t ′ < t and (x|t ′ , [[·]]) |H φ1

where t, t ′ ∈ R≥0.

Therefore, the formula φ1Uφ2 intuitively expresses the prop-
erty that over the trajectory x, φ1 is true until φ2 becomes true.
The release operator φ1Rφ2 states that φ2 should always hold, a
requirement which is released when φ1 becomes true. Further-
more, we can derive additional temporal operators such as even-
tually �φ = >Uφ and always �φ = ⊥Rφ. The formula �φ
indicates that over the trajectory x the subformula φ eventually
becomes true, whereas �φ indicates that φ is always true over x.

Example 5. Going back to Example 1, we can now formally define
the specification using an RTL formula as: ψ1 = �π0 ∧ �(π2 ∧
�(π3 ∧ �(π4 ∧ (¬π2 ∧ ¬π3)U�π1))).

Finally, one important assumption, which we need to make
when we write specifications for physical processes, is that the
trajectoriesmust satisfy the property of finite variability (Barringer,
Kuiper, & Pnueli, 1986). The finite variability property requires
that within a finite amount of time there cannot be an infinite
number of changes in the satisfaction of the atomic propositions
with respect to the trajectory. In other words, we should not
consider Zeno trajectories (Lygeros, Johansson, Simic, Zhang, &
Sastry, 2003). We address this issue in the design of our hybrid
controllers in Section 6.3.

4. Tracking using approximate simulation

In this section, we present a framework for tracking control
with guaranteed error bounds. It allows us to design an interface
between the dynamics model Σ and its kinematics abstraction
Σ ′ so that Σ is able to track the trajectories of Σ ′ with a given
precision. It is based on the notion of approximate simulation
relation (Girard & Pappas, 2007). Whereas exact simulation
relations require the observations, i.e., x(t) and z(t), of two systems
to be identical, approximate simulation relations allow them to
be different provided their distance remains bounded by some
parameter.
Let us first rewrite the second ordermodelΣ as a system of first

order differential equations

Σ :

{
ẋ(t) = y(t), x(t) ∈ X, x(0) ∈ X0
ẏ(t) = u(t), y(t) ∈ R2, y(0) = [0 0]T

where x(t) is the position of the mobile robot and y(t) its velocity
at time t ≥ 0. Here, T denotes the transpose. If we let θ(t) =
[xT(t) yT(t)]T, i.e., θ : R≥0 → R4, with θ(0) ∈ Θ0 = X0 × {(0, 0)},
then

θ̇ (t) = Aθ(t)+ Bu(t) and x(t) = Cxθ(t), y(t) = Cyθ(t)

where

A =
[
02 12
02 02

]
, B =

[
02
12

]
,

Cx =
[
12 02

]
, Cy =

[
02 12

]
.

Here, 0m and 1m are the zero and identity m × m matrices
respectively. Then, the approximate simulation relation is defined
as follows.

Definition 6 (Simulation Relation). A relationW ⊆ R2 × R4 is an
approximate simulation relation of precision δ ofΣ ′ byΣ if for all
(z0, θ0) ∈ W ,
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(1) ‖z0 − Cxθ0‖ ≤ δ.
(2) For all state trajectories z of Σ ′ such that z(0) = z0 there
exists a state trajectory θ of Σ such that θ(0) = θ0 and ∀t ≥
0, (z(t), θ(t)) ∈ W .

An interface associated to the approximate simulation relation
W allows us to choose the input of Σ so that the states of Σ ′ and
Σ remain inW .

Definition 7 (Interface). A continuous function uW : V ×W → U
is an interface associated with an approximate simulation relation
W , if for all (z0, θ0) ∈ W , for all trajectories z ofΣ ′ associated with
a given input function v such that z(0) = z0, the trajectory θ ofΣ
starting at θ(0) = θ0 given by the solution of

θ̇ (t) = Aθ(t)+ BuW (v(t), z(t), θ(t)) (3)

satisfies for all t ≥ 0, (z(t), θ(t)) ∈ W .

Thus, by interconnecting Σ and Σ ′ through the interface uW

as shown on Fig. 2, the system Σ tracks the trajectories of the
abstractionΣ ′ with precision δ. The next result is immediate from
Definitions 6 and 7.

Proposition 8. Let θ0 ∈ Θ0 and z0 = Cxθ0 ∈ Z0 such that
(z0, θ0) ∈ W , then for all trajectories z of Σ ′ associated with a given
input function v and initial state z0, the trajectory θ of Σ given by (3)
for θ(0) = θ0, satisfies for all t ≥ 0, ‖Cxθ(t)− z(t)‖ ≤ δ.

The construction of approximate simulation relations can be
done effectively using a class of functions called simulation
functions (Girard & Pappas, 2007). Essentially, a simulation
function of Σ ′ by Σ is a positive function bounding the distance
between the observations and non-increasing under the parallel
evolution of the systems.

Definition 9 (Simulation Function). Let F : R2 × R4 → R≥0 be
a continuous and piecewise differentiable function and uF : V ×
R2×R4 → R2 be a continuous function. If for all (z, θ) ∈ R2×R4
the following two inequalities hold

F (z, θ) ≥ ‖z − Cxθ‖2 (4)

sup
v∈V

(
∂F (z, θ)
∂z

v +
∂F (z, θ)
∂θ

(Aθ + BuF (v, z, θ))
)
≤ 0 (5)

then F is a simulation function ofΣ ′ byΣ .

Then, approximate simulation relations can be defined as level
sets of the simulation function.

Theorem 10. Let the relationW ⊆ R2 × R4 be given by

W =
{
(z, θ) ∈ R2 × R4 | F (z, θ) ≤ δ2

}
.

If for all v ∈ V , for all (z, θ) ∈ W , we have uF (v, z, θ) ∈ U, then
W is an approximate simulation relation of precision δ of Σ ′ by Σ
and uW : V × W → U given by uW (v, z, θ) = uF (v, z, θ) is an
associated interface.

Proof. Let (z0, θ0) ∈ W , then from (4), we have ‖z0 − Cxθ0‖ ≤√
F (z0, θ0) ≤ δ. Let z be a trajectory of Σ ′ generated by a given
input function v such that z(0) = z0. Let θ starting at θ(0) = θ0
be given by the solution of θ̇ (t) = Aθ(t) + BuF (v(t), z(t), θ(t)).
FromEq. (5), we have that dF (z(t), θ(t))/dt ≤ 0. Therefore, for all
t ≥ 0, (z(t), θ(t)) ∈ W . Furthermore, it implies that for all t ≥ 0,
uF (v(t), z(t), θ(t)) ∈ U . Thus, θ is a trajectory ofΣ which allows
us to conclude. �

Now we are in a position to state the result that will enable us
to perform tracking control.
Proposition 11. Assume that for the systems Σ and Σ ′ the
constraints umax and vmax satisfy the inequality

vmax

2

(
1+ |1− 1/α| + 2/

√
α
)
≤ umax (6)

for someα > 0. Then, an approximate simulation relation of precision
δ = 2vmax of Σ ′ byΣ is given by

W = {(z, θ) ∈ R2 × R4 | F (z, θ) ≤ 4v2max}

where F (z, θ) = max
(
Q (z, θ), 4v2max

)
with

Q (z, θ) = ‖Cxθ − z‖2 + α‖Cxθ − z + 2Cyθ‖2

and uW (v, z, θ) = v
2+
−1−α
4α (Cxθ−z)−Cyθ is an associated interface.

Proof. First, let us remark that (4) clearly holds. Now, let
uF (v, z, θ) = uW (v, z, θ). If Q (z, θ) ≤ 4v2max, then it is clear that
(5) holds. If Q (z, θ) ≥ 4v2max, then we can show that (see Fainekos
(2008) and Girard and Pappas (2006) for additional details)

∂F (z, θ)
∂z

v +
∂F (z, θ)
∂θ

(Aθ + BuF (v, z, θ))

= −Q (z, θ)− 2(Cxθ − z) · v
≤ −Q (z, θ)+ 2vmax‖Cxθ − z‖.

Since ‖Cxθ − z‖2 ≤ Q (z, θ), we have

∂F (z, θ)
∂z

v +
∂F (z, θ)
∂θ

(Aθ + BuF (v, z, θ))

≤ −Q (z, θ)+ 2vmax
√
Q (z, θ)

≤

√
Q (z, θ)(2vmax −

√
Q (z, θ)).

Since Q (z, θ) ≥ 4v2max, Eq. (5) holds andF is a simulation function
of Σ ′ by Σ , and uF is an associated interface. Moreover, for all
v ∈ V , (z, θ) ∈ W , the interface uF (v, z, θ) satisfies the velocity
constraints ofΣ:

‖uF ‖ = ‖uW‖ =

∥∥∥∥v2 + −1+ α − 2α4α
(Cxθ − z)− Cyθ

∥∥∥∥
=

∥∥∥∥v2 + −1+ α4α
(Cxθ − z)−

1
2
(Cxθ − z + 2Cyθ)

∥∥∥∥
≤
vmax

2
+
| − 1+ α|
4α

√
F (z, θ)+

1
2

√
F (z, θ)
α

≤
vmax

2

(
1+ |1− 1/α| + 2/

√
α
)
≤ umax.

Therefore, Theorem10applies andW is an approximate simulation
relation of precision 2vmax of Σ ′ by Σ and an associated interface
is given by uW (v, z, θ) = uF (v, z, θ). �

The importance of Proposition 11 is the following. Assume that
the initial state of the abstraction Σ ′ is chosen so that z(0) =
Cxθ(0) and thatΣ ′ andΣ are interconnected through the interface
uW . Then, from Proposition 8, the observed trajectories x(t) of
systemΣ track the trajectories z(t) ofΣ ′ with precision 2vmax.

5. Robust interpretation of RTL formulas

In the previous section, we designed a control interface which
enables the dynamicmodelΣ to track its abstract kinematicmodel
Σ ′ with accuracy 2vmax. In this section, we define a new mapping
[[·]]δ for the atomic propositionswhich takes into account a bound δ
on the tracking error. Thenewmap [[·]]δ provides uswith a δ-robust
interpretation of the motion planning specification φ. Intuitively,
in order to achieve a robust interpretation of the specification
φ, [[·]]δ should contract by δ the areas that must be visited and
expand by δ the areas that must be avoided. The fact that we have
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introduced RTL syntax in NNF enables us to classify the atomic
propositions in the input formula φ according to whether they
represent regions that must be reached (no negation in front of
the atomic proposition) or avoided (a negation operator appears
in front of the atomic proposition).
Furthermore, for technical reasons, we need to remove any

negation operators that appear in the input formula. Therefore, we
introduce the extended set of atomic propositions ΞΠ . In detail, we
first define two new sets of symbols Ξ+Π = {ξπ | π ∈ Π} and
Ξ−Π = {ξ¬π | π ∈ Π} and, then, we set ΞΠ = Ξ

+

Π ∪ Ξ
−

Π . We also
define a translation algorithm pos : ΦΠ → Φ+ΞΠ which takes as
input an RTL formulaφ in NNF and returns a formula pos(φ)where
the occurrences of the terms π and¬π have been replaced by the
members ξπ and ξ¬π of ΞΠ respectively. Since we have a new set
of atomic propositions, namely ΞΠ , we need to define a new map
[[·]]

ε
: ΞΠ → P (X) for the interpretation of the propositions. This

is straightforward: ∀ξ ∈ ΞΠ , if ξ = ξπ , then [[ξ ]]ε =: [[π ]], else
(i.e., if ξ = ξ¬π ) [[ξ ]]ε =: X \ [[π ]]. Then, the following result is
immediate from the definition of [[·]]ε .

Lemma 12. Given a formula φ ∈ ΦΠ , a map [[·]] : Π → P (X) and
a trajectory x of Σ , we have (x, [[·]]) |H φ iff (x, [[·]]ε) |H pos(φ).

The importance of the previous lemma is the following. Since
a formula φ ∈ ΦΠ is equivalent to the formula φ′ = pos(φ)
under the maps [[·]] : Π → P (X) and [[·]]ε : ΞΠ → P (X)
respectively, for the rest of the paper we can assume that the input
specification is given without any negation operators. That is, the
next results are given with respect to a formula φ′ ∈ Φ+ΞΠ and
a map [[·]]ε : ΞΠ → P (X). For clarity in the presentation, we
denote all RTL formulas in NNF without any negation operator
using primed Greek letters, e.g., φ′, φ′1, ψ

′.
At this point, we have distinguished the regions that must be

avoided (Ξ−Π ) and the regions that must be reached (Ξ
+

Π ). We
proceed to formally defining what we mean by region contraction
in order to define our notion of robustness.

Definition 13 (δ-Contraction). Given a radius δ ∈ R≥0 ∪ {+∞}
and a point λ in a normed space Λ, the δ-ball centered at λ is
defined as Bδ(λ) = {λ′ ∈ Λ | ‖λ − λ′‖ < δ}. If Γ ⊆ Λ, then
Cδ(Γ ) = {λ ∈ Λ | Bδ(λ) ⊆ Γ } is the δ-contraction of the set Γ .

Now, the δ-robust interpretation of a given RTL formula φ can
be achieved by simply introducing a newmap [[·]]δ : ΞΠ → P (Z),
where Z = Cδ(X) is the free workspace of Σ ′. For a given δ ∈
R≥0, the definition of the map [[·]]δ is founded on the map [[·]]ε as
follows:

∀ξ ∈ ΞΠ , [[ξ ]]δ =: cl(Cδ([[ξ ]]
ε)).

The operator cl(Γ ) denotes the closure of a set Γ , that is, the
intersection of all closed sets containing Γ .

Example 14. Let us revisit Examples 1 and 5. The formula ψ1
is converted to ψ ′1 = pos(ψ1) = �ξπ0 ∧ �(ξπ2 ∧ �(ξπ3 ∧
�(ξπ4 ∧ (ξ¬π2 ∧ ξ¬π3)U�ξπ1))). We can now apply the contraction
operation on the regions of interest labeled by ΞΠ and the
free workspace X and derive the δ-robust interpretation of the
propositions in ΞΠ and the modified workspace Z (see Fig. 3). For
the purposes of this example, we define the map hδ : Z → P (ΞΠ )
such that for any z ∈ Z we have hδ(z) = {ξ ∈ ΞΠ | z ∈ [[ξ ]]δ}.
Any point z in the cell 10 (yellow or light gray) is labeled by the
set of propositions hδ(z) = {ξπ0 , ξ¬π1 , ξπ2 , ξ¬π3 , ξ¬π4}, while any
point z in the annulus region consisting of the cells 6, 7, 8 and 9 (red
or dark gray) is labeled by the set hδ(z) = {ξπ0 , ξ¬π1 , ξ¬π3 , ξ¬π4}.
Notice that Z = [[ξπ0 ]]δ and that Z0 = X0 = [[π1]].
Fig. 3. A convex cell decomposition of the modified workspace of Example 14 for
δ = 1+ ε (with ε sufficiently small).

Remark 15. The δ-contraction of a polyhedral set is not always
a polyhedral set. In order to maintain a polyhedral description
for all the sets, we under-approximate the δ-contraction by the
inward δ-offset. Informally, the inward δ-offset of a polyhedral set
is the inward δ-displacement of its facets along the corresponding
normal directions. Since the δ-offset is an under-approximation of
the δ-contraction, Theorem 16 still holds.

The following theorem is the connecting link between the
specifications satisfied by the abstraction Σ ′ and the concrete
systemΣ . Informally, it states that given δ > 0 if a trajectory z of
Σ ′ satisfies the δ-robust interpretation of the input specification
φ′ and the trajectories z and x always remain δ-close, then x will
satisfy the same non-robust specification φ′.

Theorem 16. Consider a formula φ′ ∈ Φ+ΞΠ , a map [[· ]]
ε
: ΞΠ →

P (X) and a number δ ∈ R>0, then for all trajectories x of Σ and
z of Σ ′ such that ‖z(t) − x(t)‖ < δ for all t ≥ 0, we have
(z, [[·]]δ) |H φ′ H⇒ (x, [[·]]ε) |H φ′.

Proof. By induction on the structure of φ′.
Case φ′ = ξ ∈ ΞΠ : We have (z, [[·]]δ) |H ξ iff z(0) ∈ [[ξ ]]δ =
Cδ([[ξ ]]ε). The later implies that Bδ(z(0)) ⊆ [[ξ ]]ε . Since ‖z(0) −
x(0)‖ < δ, we immediately get that x(0) ∈ [[ξ ]]ε . Thus, (x, [[·]]ε) |H
ξ .
Case φ′ = φ′1Uφ

′

2: We have (z, [[·]]δ) |H φ′1Uφ
′

2 iff by definition
there exists t ≥ 0 such that (z|t , [[·]]δ) |H φ′2 and for all t

′
∈ [0, t)

we have (z|t ′ , [[·]]δ) |H φ′1. Since ‖z(t
′′)− x(t ′′)‖ < δ for all t ′′ ≥ 0,

by the induction hypothesis, we get that (x|t , [[·]]ε) |H φ′2 and that
for all t ′ ∈ [0, t), (x|t ′ , [[·]]ε) |H φ′1. Therefore, (x, [[·]]

ε) |H φ′1Uφ
′

2.
The other cases (see Fainekos (2008)) are either similar (release)

or straightforward (conjunction and disjunction). �

6. Temporal logic motion planning

Having presented the connection between the dynamics model
Σ and the kinematics model Σ ′, we proceed to solving the
temporal logicmotion planning problem forΣ ′. Formally, we solve
the following more general problem.

Problem 17. Given the system Σ ′, a set of atomic propositions
ΞΠ , an RTL formula φ′ ∈ Φ+ΞΠ and a map [[·]]δ : ΞΠ → P (Z),
construct a hybrid controller H ′

φ′
such that ([Σ ′,H ′

φ′
], [[·]]δ) |H φ

′.

Our solution consists of the following three steps: (1) reduction
of the continuous environment Z into a discrete graph, (2)
temporal logic planning over the discrete graph, and (3) continuous
implementation of the final discrete plan.
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6.1. Discrete abstraction of robot motion

In order to use discrete logics to reason about continuous
systems, we need to construct a finite partition of the continuous
state space Z with respect to the map [[·]]δ . For that purpose, we
can use many efficient cell decomposition methods for polygonal
environments (Choset et al., 2005; LaValle, 2006). Note that by
employing any workspace decomposition method we can actually
construct a topological graph (or roadmap as it is sometimes
referred to LaValle (2006)). A topological graph describes which
cells are topologically adjacent, i.e., each node in the graph
represents a cell and each edge in the graph implies topological
adjacency of the cells. No matter which decomposition algorithm
is employed, the workspace’s decomposition must be proposition
preserving with respect to the mapping [[·]]δ . In other words, we
require that all the points which belong to the same cell must be
labeled by the same set of propositions.
On a more formal note, we can partition the workspace Z with

respect to the map [[·]]δ and the set of initial conditions Z0 into
a number of equivalence classes, that is, into a number of sets of
points which satisfy the same property (in this case the same set
of propositions). Note that mathematically the set of equivalence
classes consists of the interior of the cells, the edges and the
vertices. In the following, we defineQ = {q1, . . . , qn} to be the set
of all equivalence classes. Let us introduce the map T : Z → Q
which sends each state z ∈ Z to one equivalence class in Q.
Then, we can formally state the proposition preserving property
as follows: ∀zi, zj ∈ Z . T (zi) = T (zj) implies hδ(zi) = hδ(zj). Recall
that hδ(z) = {ξ ∈ ΞΠ | z ∈ [[ξ ]]δ}. Moreover, we define the
‘‘inverse’’ map T−1 : Q → P (Z) of T such that T−1(q)maps to all
states z ∈ Z which are contained in the equivalence class q.
In the following paragraphs, we present how the topological

graph resulting from the decomposition of Z with respect to [[·]]δ
can be converted into a Finite Transition System (FTS) that serves
as an abstract model of the robot motion. Posing the topological
graph as an FTS allows us to use standard automata theoretic
techniques (Clarke et al., 1999) in order to solve the high level
planning problem.

Definition 18 (FTS). A Finite Transition System is a tuple D =

(Q ,Q0,→D , hD ,ΞΠ )where:

• Q is a set of states. Here, Q ⊆ Q is the set of equivalence classes
that represent the interior of the cells.
• Q0 ⊆ Q is the set of possible initial cells. Here, Q0 satisfies
∪q0∈Q0 cl(T

−1(q0)) = Z0.
• →D ⊆ Q × Q captures the topological relationship between
the cells. There is a transition from cell qi to cell qj written as
qi→D qj if the cells labeled by qi, qj are adjacent, i.e., cl(T−1(qi))
and cl(T−1(qj)) share a common edge. Finally, for all q ∈ Q we
add a self-loop, i.e., q→D q.
• hD : Q → P (ΞΠ ) is a map defined as hD(q) = {ξ ∈ ΞΠ |
T−1(q) ⊆ [[ξ ]]δ}.

We define a path on the FTS to be a sequence of states (cells) and
a trace to be the corresponding sequence of sets of propositions.
Formally, a path is a function p : N → Q such that for each
i ∈ N we have p(i)→D p(i + 1) and the corresponding trace is
the function composition p̄ = hD ◦ p : N→ P (ΞΠ ).

Example 19. Let us consider the convex decomposition of the
workspace of Example 14 which appears in Fig. 3. The topological
graph contains 40 nodes and 73 edges. For the following examples,
we letD1 denote the FTSwhich corresponds to the aforementioned
topological graph.
6.2. Linear temporal logic planning

The transition systemD , whichwas constructed in the previous
section, will serve as an abstract model of the robot’s motion. We
must now lift our problem formulation from the continuous to the
discrete domain. For that purpose we introduce and use Linear
Temporal Logic (LTL) (Pnueli, 1977) which has exactly the same
syntax as RTL, but its semantics is interpreted over discrete paths
generated by a finite transition system. In the following, we let
p̄ φ denote the satisfiability of an LTL formula φ over a trace
p̄.

Definition 20 (Discrete LTL Semantics). The semantics of any LTL
formula φ′ ∈ Φ+ΞΠ is defined as:

p̄ >, p̄ ⊥, p̄ ξ iff ξ ∈ p̄(0)
p̄ φ′1 ∧ φ

′

2 if p̄ φ′1 and p̄ φ′2

p̄ φ′1 ∨ φ
′

2 if p̄ φ′1 or p̄ φ′2

p̄ φ′1Uφ
′

2 if there exists i ≥ 0 such that p̄|i φ′2

and for all jwith 0 ≤ j < iwe have p̄|j φ′1

p̄ φ′1Rφ
′

2 if for all i ≥ 0 we have p̄|i φ′2

or there exists j ∈ [0, i) such that p̄|j φ′1

where i, j ∈ N.

In this work, we are interested in the construction of automata
that only accept the traces of D which satisfy the LTL formula φ′.
Such automata (which are referred to as Büchi automata (Clarke
et al., 1999, Section 9.1)) differ from the classic finite automata in
that they accept infinite strings (traces ofD in our case).

Definition 21 (Automaton). A Büchi automaton is a tuple B =

(SB, s0B,Ω, λB, FB)where:

• SB is a finite set of states and s0B is the initial state.
• Ω is an input alphabet.
• λB : SB ×Ω → P (SB) is a transition relation.
• FB ⊆ SB is a set of accepting states.

In order to definewhat itmeans for a Büchi automaton to accept
a trace, we must first introduce some terminology. A run r of B
is a sequence of states r : N → SB that occurs under an input
trace p̄, that is for i = 0 we have r(0) = s0B and for all i ≥ 0
we have r(i + 1) ∈ λB(r(i), p̄(i)). Let lim(·) be the function that
returns the set of states that are encountered infinitely often in the
run r of B. Then, a run r of a Büchi automaton B over an infinite
trace p̄ is accepting if and only if lim(r) ∩ FB 6= ∅. Informally,
a run r is accepting when some accepting state s ∈ FB appears
in r infinitely often. Finally, we define the language L(B) of B
to be the set of all traces p̄ that have a run that is accepted by
B. For each LTL formula φ′, we can construct a Büchi automaton
Bφ′ = (SBφ′ , s0Bφ′ ,P (ΞΠ ), λBφ′

, FBφ′ ) that accepts the infinite
traces which satisfy the specification φ′, i.e., p̄ ∈ L(Bφ′) iff p̄ φ′.
The translation froman LTL formulaφ′ to a Büchi automatonB ′φ is a
well-studied problem and, thus, we refer the reader to Clarke et al.
(1999, Section 9.4) and the references therein for the theoretical
details behind this translation.
We can now use the abstract representation of the robot’s

motion, that is the FTS, in order to reason about the desiredmotion
of the robot. First, we convert the FTSD into a Büchi automatonD ′.
The translation fromD toD ′ enables us to use standard tools and
techniques from automata theory (Clarke et al., 1999, Section 9)
alleviating, thus, the need for developing new theories. Translating
an FTS into an automaton is a standard procedure which can be
found in any formal verification textbook (see Clarke et al. (1999,
Section 9.2)).
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Definition 22 (FTS to Automaton). The Büchi automaton D ′

which corresponds to the FTS D is the automaton D ′ =
(Q ′, qd,P (ΞΠ ), λD ′ , FD ′)where:

• Q ′ = Q ∪ {qd} for qd 6∈ Q .
• λD ′ : Q ′ × P (ΞΠ )→ P (Q ′) is the transition relation defined
as: qj ∈ λD ′(qi, l) iff qi→D qj and l = hD(qj) and q0 ∈ λD ′(qd, l)
iff q0 ∈ Q0 and l = hD(q0).
• FD ′ = Q ′ is the set of accepting states.

Now that all the related terminology is defined, we can give
an overview of the basic steps involved in the temporal logic
planning (De Giacomo & Vardi, 1999). Our goal in this section is to
generate paths onD that satisfy the specification φ′. In automata
theoretic terms, we want to find the subset of the languageL(D ′)
which also belongs to the language L(Bφ′). This subset is simply
the intersection of the two languagesL(D ′)∩L(Bφ′) and it can be
constructed by taking the productD ′×Bφ′ of the Büchi automaton
D ′ and the Büchi automaton Bφ′ . Informally, the Büchi automaton
Bφ′ restricts the behavior of the system D ′ by permitting only
certain acceptable transitions. Then, given an initial state in the FTS
D , which is an abstraction of the actual initial position of the robot,
we can choose a particular trace fromL(D)∩L(Bφ′) according to
a preferred criterion. In the following, we present the details of this
construction.

Definition 23. The product automaton A = D ′ × Bφ′ is the
automatonA = (SA, s0A,P (ΞΠ ), λA, FA)where:

• SA = Q ′ × SBφ′ and s0A = {(qd, s0Bφ′ )}.
• λA : SA × P (ΞΠ ) → P (SA) such that (qj, sj) ∈ λA((qi, si), l)
iff qj ∈ λD ′(qi, l) and sj ∈ λBφ′ (si, l).
• FA = Q ′ × F is the set of accepting states.

By construction, the following lemma is satisfied (recall that p̄
is a trace ofD if and only if p̄ is accepted byD ′).

Lemma 24 (Adapted from De Giacomo and Vardi (1999)). A trace p̄
of D that satisfies the specification φ′ exists iff the language of A is
non-empty, i.e.,L(A) = L(D ′) ∩L(Bφ′) 6= ∅.

Checking the emptiness of language L(A) is an easy algorith-
mic problem (Clarke et al., 1999, Section 9.3). First, we convert
automaton A to a directed graph and, then, we find the strongly
connected components (SCC) (Cormen, Leiserson, Rivest, & Stein,
2001, Section 22.5) in that graph. If at least one SCC that con-
tains an accepting state is reachable from s0A, then the language
L(A) is not empty. However, we are not just interested in fig-
uring out whether L(A) = ∅. We need to construct an accept-
ing run of A and from that derive a discretized path for the robot
on D . The good news is that if L(A) is non-empty, then there
exist accepting (infinite) runs on A that have a finite represen-
tation. Each such run consists of two parts. The first part is a fi-
nite sequence of states r(0)r(1) . . . r(mf ) which corresponds to
the sequence of states starting from r(0) = s0A and reaching a
state r(mf ) ∈ FA. The second part is a periodic sequence of states
r(mf )r(mf +1) . . . r(mf +ml) such that r(mf +ml) = r(mf )which
corresponds to the part of the run that traverses some part of the
strongly connected component. Here, mf ,ml ≥ 0 is less than or
equal to the number of states inD , i.e.,mf ,ml ≤ |Q |.
Since in this paper we are concerned with a path planning

application, it is desirable to choose an accepting run that traverses
as few different states onD as possible. The high level description
of the algorithm is as follows. First, we find all the shortest
sequences of states from s0A to all the accepting states in FA using
Breadth First Search (BFS) (Cormen et al., 2001, Section 22.2). Then,
from each reachable accepting state qa ∈ FA we initiate a new BFS
in order to find the shortest sequence of states that leads back to qa.
Note that if no accepting state is reachable from s0A or no infinite
loop can be found, then the language L(A) is empty and, hence,
the temporal logic planning problem does not have a solution.
Moreover, ifL(A) 6= ∅, then this algorithm can potentially return
a set R of accepting runs r each leading to a different accepting
state in FA with a different periodic part. From the set of runs R,
we can easily derive a corresponding set of paths P onD such that
for all p ∈ P we have that the trace p̄ satisfies φ′. The following is
immediate from the definitions.

Proposition 25. Let pr : SA → Q be a projection function such that
pr(q, s) = q. If r is an accepting run of A, then p = (pr ◦ r)|1 is a
path onD such that p̄ φ′.

Any path p ∈ P can be characterized by a pair of sequences
of states (pf , pl). Here, pf = pf1p

f
2 . . . p

f
nf denotes the finite part of

the path and pl = pl1p
l
2 . . . p

l
nl the periodic part (infinite loop) such

that pfnf = p
l
1. The relation between the pair (p

f , pl) and the path
p is given by p(i) = pfi+1 for 0 ≤ i ≤ nf − 2 and p(i) = p

l
j with

j = ((i− nf + 1) mod nl)+ 1 for i ≥ nf − 1.

Example 26. The Büchi automatonBψ ′1
that accepts the paths that

satisfy ψ ′1 has 5 states (one accepting) and 13 transitions. For the
conversion from LTL to Büchi automata, we use the python tool-
box LTL2NBA by Fritz and Teegen, which is based on Fritz (2003).
The product automatonA1 = D ′1×Bψ ′1

has 205 states. The short-
est path on the topological graph starting from cell 5 is: (pf , pl) =
({5, 41, 1, 25, 24, 8, 10, 6, 37, 35, 14, 16, 15, 34, 18, 21, 19, 36,
38, 23, 4, 44, 5}, {5}). Using Fig. 3, the reader can verify that this
sequence satisfies ψ ′1 under the map [[·]]δ .

6.3. Continuous implementation of discrete trajectory

Our next task is to utilize each discrete path p ∈ P in order
to construct a hybrid control input v(t) for t ≥ 0 which will
driveΣ ′ so that its trajectories z(t) satisfy the RTL formula φ′. We
achieve this desired goal by simulating (or implementing) at the
continuous level each discrete transition of p. Thismeans that if the
discrete system Dmakes a transition qi→D qj, then the continuous
system Σ ′ must match this discrete step by moving from any
position in the cell cl(T−1(qi)) to a position in the cell cl(T−1(qj)).
Moreover, if the periodic part in the path p consists of just a single
state ql, then we have to guarantee that the position of the robot
always remains in the invariant set T−1(ql). These basic control
specifications imply that we need at least two types of continuous
feedback control laws.We refer to these control laws as reachability
and cell invariant controllers. Informally, a reachability controller
drives each state inside a cell q to a predefined region on the cell’s
boundary,while the cell invariant controller guarantees that all the
trajectories that start inside a cell q always remain in that cell.
Let us assume that we are given or that we can construct a finite

collection of continuous feedback control laws {gκ}κ∈K indexed
by a control alphabet K such that for any κ ∈ K we have gκ :
Zκ → V with Zκ ⊆ Z . In our setting, we make the following
additional assumptions. First, we define the operational range of
each controller to be one of the cells in the workspace of the
robot, i.e., for any κ ∈ K there exists some q ∈ Q such that
Zκ = cl(T−1(q)). Second, if gκ is a reachability controller, then we
require that all the trajectories which start in Zκ must converge
on the same subset of the boundary of Zκ within finite time while
never exiting Zκ before that time. Finally, if gκ is a cell invariant
controller, then we require the all the trajectories which initiate
from a point in Zκ converge on the barycenter bκ of Zκ . Examples
of such feedback control laws for Σ ′ appear in Fig. 4. A formal
presentation of these types of controllers is beyond the scope of
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Fig. 4. (a) Reachability and (b) Cell invariant controller.

this paper and the interested reader can find further details in Belta
et al. (2005), Conner et al. (2003) and Lindemann and LaValle
(2005).
Thewaywe can compose such controllers given the pair (pf , pl),

which characterizes a path p ∈ P , is as follows. First note that
it is possible to get a finite repetition of states in the path p, for
example there can exist some i ≥ 0 such that p(i) = p(i + 1)
but p(i + 1) 6= p(i + 2). This situation might occur because we
have introduced self-loops in the automatonD′ in conjunctionwith
the possibility that the Büchi automaton Bφ′ might not be optimal
(in the sense of number of states and transitions). Therefore, we
first remove finite repetitions of states from p. Removing such
repeated states from p does not change the fact that p̄ φ′. This is
possible because LTL formulas without the next time operator are
stutter invariant (Clarke et al., 1999, Section 10). Next, we define
the control alphabet to be K = K f ∪ K l ⊆ Q × Q where
K f = ∪

nf−1
i=1 {(p

f
i , p

f
i+1)} ∪ {(p

f
nf , p

l
1)} and K

l
= ∪

nl−1
i=1 {(p

l
i, p
l
i+1)} ∪

{(plnl , p
l
1)}when nl > 1 or K

l
= ∅ otherwise. For any κ = (qi, qj) ∈

K \ {(pfnf , p
l
1)}, we design gκ to be a reachability controller that

drives all initial states in Zκ = cl(T−1(qi)) to the common edge
cl(T−1(qi)) ∩ cl(T−1(qj)). Finally for κ = (pfnf , p

l
1), we let gκ be a

cell invariant controller for the cell pl1.
It is easy to see now how we can use each pair (pf , pl) in order

to construct a hybrid controller H ′
φ′
. Starting anywhere in the cell

cl(T−1(pf1)), we apply the control law g(pf1,p
f
2)
until the robot crosses

the edge cl(T−1(pf1)) ∩ cl(T
−1(pf2)). At that point, we switch the

control law to g
(pf2,p

f
3)
. The above procedure is repeated until the

last cell of the finite path pf at which point we apply the cell
invariant controller g

(pfnf ,p
l
1)
. If the periodic part pl of the path has

only one state, i.e., nl = 1, then this completes the construction
of the hybrid controller H ′

φ′
. If on the other hand nl > 1, then we

check whether the trajectory z(t) has entered an ε-neighborhood
of the barycenter of the cell invariant controller. If so, we apply
ad infinitum the sequential composition of the controllers that
correspond to the periodic part of the path pl followed by the
cell invariant controller g

(pfnf ,p
l
1)
. The cell invariant controller is

necessary in order to avoid Zeno behavior (Lygeros et al., 2003).
Since there can only exist at most one Zeno cycle in the final
hybrid automaton and this cycle is guaranteednot to generate Zeno
behaviors due to the existence of the cell invariant controller, the
following proposition is immediate.

Proposition 27. The trajectories z of the system [Σ ′,H ′
φ′
] satisfy the

finite variability property.

Assuming now that Σ ′ is controlled by the hybrid controller
H ′
φ′
which is constructed as described above, we can prove the

following theorem.
Fig. 5. A trajectory of system Σ ′ for the path of Example 26 using the potential
field controllers of Conner et al. (2003).

Theorem 28. Let φ′ ∈ Φ+ΞΠ , P be a set of paths on D such that
∀p ∈ P, we have p̄ φ′ and H ′

φ′
be the corresponding hybrid

controller, then ([Σ ′,H ′
φ′
], [[·]]δ) |H φ

′.

Proof. For any p ∈ P we prove that if p̄ φ′, then (z, [[·]]δ) |H
φ′ for any trajectory z of the system [Σ ′,H ′

φ′
] starting at any

z(0) ∈ cl(T−1(p(0))). The proof uses induction on the structure
of φ′. Here, we only present two cases. The other cases are similar
(see Fainekos (2008)).
Case p̄ ξ : Since z(0) ∈ cl(T−1(p(0))) we get that z(0) ∈ [[ξ ]]δ
(by def. [[ξ ]]δ = cl([[ξ ]]δ)). Hence, (z, [[·]]δ) |H ξ .
Case p̄ φ′1Uφ

′

2: Then there exists some i ≥ 0 such that p̄|i φ′2
and for all j ∈ [0, i) we get that p̄|j φ′1. Consider now the
trajectory z that is generated by Σ ′ using the controller H ′

φ′
that

corresponds to the path p. The initial condition for the trajectory
z is any point in the initial cell, i.e., z(0) ∈ cl(T−1(p(0))). By
construction, there exists a sequence of times 0 = τ0 ≤ τ1 ≤
· · · ≤ τi, where τj for j ∈ (0, i] is the time that the trajectory z
crosses the edge cl(T−1(p(j − 1))) ∩ cl(T−1(p(j))). Consider any
time instant t ′ ∈ [τj, τj+1] for any j ∈ [0, i). Then, we know that
z|t ′(0) ∈ cl(T−1(p|j(0))). Now the induction hypothesis applies
and we get that (z|t ′ , [[·]]δ) |H φ′1. Therefore, for all t

′
∈ [0, τi],

we have (z|t ′ , [[·]]δ) |H φ′1. Now, note that z(τi) ∈ cl(T
−1(p(i −

1)))∩ cl(T−1(p(i))), hence by the induction hypothesis we get that
(z|τi , [[·]]δ) |H φ′2. Thus, if we set t

′
= τi, then we are done and

(z, [[·]]δ) |H φ′1Uφ
′

2. Note that if p̄ φ′2, then we are immediately
done since the induction hypothesis applies directly. �

Theorem 28 concludes our proposed solution to Problem 17.
The following example illustrates the theoretical results presented
in Section 6.

Example 29. For the construction of the hybrid controller H ′
φ′

based on the path of Example 26, we deploy the potential field
controllers of Conner et al. (2003) on the cellular decomposition
of Fig. 3. The resulting trajectory with initial position (35, 20) and
velocity bound vmax = 0.5 appears in Fig. 5.

7. Putting everything together

At this point, we have presented all the pieces that comprise our
proposed solution to Problem 2. Nowwe are in a position to put all
the parts together according to the hierarchy proposed in Fig. 2.
The following theorem which is immediate from Proposition 11,
Lemma 12 and Theorems 16 and 28 states the main result of the
paper.
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Fig. 6. The trajectory of system Σ which corresponds to the trajectory of system
Σ ′ presented in Fig. 5.

Theorem 30. Let W be an approximate simulation relation of
precision 2vmax betweenΣ ′ andΣ and uW be the associated interface.
Let φ ∈ ΦΠ and define φ′ = pos(φ). Let H ′

φ′
be a controller

for Σ ′ and Hφ be the associated controller for Σ obtained by the
interconnection of the elements as shown in Fig. 2. Then, for δ >
2vmax, ([Σ ′,H ′φ′ ], [[·]]δ) |H φ

′ implies ([Σ,Hφ], [[·]]) |H φ.

Even though our framework regards as input the bound on
acceleration umax and then derives the velocity bound vmax, in the
following examples we give as input the bound vmax. We believe
that this makes the presentation of the examples clearer.

Example 31. The trajectory of system Σ which corresponds to
the trajectory of Example 29 of system Σ ′ appears in Fig. 6. The
parameters for this problem are vmax = 0.5 and α = 100 which
implies that umax should at least be 0.5475. Notice that the two
trajectories are almost identical since the velocity ofΣ ′ is so low.

The next example considers larger velocity bounds than
Example 31 and a non-terminating specification.

Example 32. Consider the environment in Fig. 7 and the RTL
formula φ = �(π0 ∧ �(π1 ∧ �π2)). This specification requires
that the robot first visits [[π1]] and then [[π2]] repeatedly while
always remaining in [[π0]]. For this example, we use the controllers
developed in Belta et al. (2005) and for the triangulation of the
environmentweuse theC library (Narkhede&Manocha, 1995).We
consider vmax = 3 and a = 100. The resulting trajectory appears in
Fig. 7. The black region in the center of the workspace represents
a static obstacle in the environment which is modeled as a hole in
[[π0]].

8. Related research and discussion

There exist several related approaches to motion planning us-
ing hybrid or symbolic methods. For example, the maneuver au-
tomata in Frazzoli (2001) generate trajectories for helicopters by
composing simple dynamic maneuvers. The control quanta (Pan-
canti, Pallottino, Salvadorini, & Bicchi, 2004) solve the navigation
problem for non-holonomic vehicles using quantized control. The
motion description language (Hristu-Varsakelis, Egerstedt, & Kr-
ishnaprasad, 2003) and the framework in Koutsoukos et al. (2000)
utilize regular languages in order to guide the construction of hy-
brid systems. In Moor and Davoren (2001), the authors synthesize
robust hybrid automata starting from specifications expressed in
a modal logic. In Klavins (2000), the author presents a framework
for the synthesis of distributed hybrid controllers for an assembly
factory given basic controllers and descriptions of the tasks. One
Fig. 7. The initial environment of Example 32 and the resulting trajectory x(t) of
the dynamic robotΣ .

of the first explicit applications of temporal logics to robotics ap-
pears in Antoniotti and Mishra (1995). This paper deals with the
controller synthesis problem for locomotion. The design of discrete
time controllers for linear systems that satisfy LTL specifications
is addressed in Tabuada and Pappas (2006). Finally in Fainekos,
Loizou, and Pappas (2006), controller specifications are derived
from flat RTL formulas.
The work that is the closest related to ours appears in Kloetzer

and Belta (2006). The authors in Kloetzer and Belta (2006) extend
the framework presented in Fainekos et al. (2005) in order to
design hybrid automata with affine dynamics with drift using the
controllers presented in Habets and van Schuppen (2004). The
framework in Kloetzer and Belta (2006) can also solve Problem 2,
but we advocate that our approach has several clear advantages
when one explicitly considers the motion planning problem.
First, the hierarchical approach enables the design of control
laws for a two-dimensional system instead of a four-dimensional
one. Second, our approach avoids the state explosion problem
introduced by (i) the fine partitioning of the state space with
respect to the predicates, and (ii) the consequent tessellation of the
four-dimensional space. Finally, the freedom to choose a δ greater
than 2vmax enables the design of hybrid controllers for non-point
robots that can also tolerate bounded inaccuracies in the system
(see Fainekos (2008)). For these reasons, we strongly believe that a
hierarchical approach can provide a viable solution to a large class
of control problems.

9. Conclusions and future work

We have presented an automatic framework for the solution of
the temporal logic motion planning problem for dynamic mobile
robots. Our framework is based on hierarchical control, the notion
of approximate bisimulation relations and a new definition of
robustness for temporal logic formulas. In the process of building
this new framework we have also derived two intermediate
results. First, we presented an automatic framework for the
solution of the temporal logic motion planning problem for
kinematic models. Second, we showed how to construct a more
robust solution to the above problem, which can account for
bounded errors in the trajectories of the system. To the best of our
knowledge, this paper presents the first computationally tractable
approach to all the above problems.
Future research will concentrate on several directions. First,

we are considering employing controllers for non-holonomic sys-
tems (Conner, Choset, & Rizzi, 2006) at the low hierarchical level.
Complementary to the first direction, we are investigating new
interfaces that can take into account non-holonomic constraints.
Another important direction is the extension of this framework
to three-dimensional motion planning. Finally, we are currently
working on converting our single-robot motion planning frame-
work into a reactive multi-robot motion planning system.
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