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Differentially Private Distributed
Constrained Optimization

Shuo Han, Member, IEEE , Ufuk Topcu, and George J. Pappas, Fellow, IEEE

Abstract—Many resource allocation problems can be for-
mulated as an optimization problem whose constraints con-
tain sensitive information about participating users. This
paper concerns a class of resource allocation problems
whose objective function depends on the aggregate alloca-
tion (i.e., the sum of individual allocations); in particular, we
investigate distributed algorithmic solutions that preserve
the privacy of participating users. Without privacy consid-
erations, existing distributed algorithms normally consist
of a central entity computing and broadcasting certain
public coordination signals to participating users. However,
the coordination signals often depend on user information,
so that an adversary who has access to the coordination
signals can potentially decode information on individual
users and put user privacy at risk. We present a distributed
optimization algorithm that preserves differential privacy,
which is a strong notion that guarantees user privacy
regardless of any auxiliary information an adversary may
have. The algorithm achieves privacy by perturbing the
public signals with additive noise, whose magnitude is
determined by the sensitivity of the projection operation
onto user-specified constraints. By viewing the differen-
tially private algorithm as an implementation of stochastic
gradient descent, we are able to derive a bound for the
suboptimality of the algorithm. We illustrate the implemen-
tation of our algorithm via a case study of electric vehicle
charging. Specifically, we derive the sensitivity and present
numerical simulations for the algorithm. Through numerical
simulations, we are able to investigate various aspects of
the algorithm when being used in practice, including the
choice of step size, number of iterations, and the trade-off
between privacy level and suboptimality.

Index Terms—Data privacy, distributed algorithms, opti-
mization methods.
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I. INTRODUCTION

E LECTRIC vehicles (EVs), including pure electric and hy-
brid plug-in vehicles, are believed to be an important com-

ponent of future power systems [18]. Studies predict that the
number of EVs in the U.S. can reach approximately 1.7 million
by year 2020 (assuming a conservative annual growth rate of
20%) [3]. By that time, EVs will become a significant load
on the power grid [5], [30], which can lead to undesirable
effects such as voltage deviations if charging of the vehicles is
uncoordinated.

The key to reducing the impact of EVs on the power grid
is to coordinate their charging schedules, which is often cast
as a constrained optimization problem with the objective of
minimizing the peak load, power loss, or load variance [7], [28].
Due to the large number of vehicles, computing an optimal
schedule for all vehicles can be very time consuming if the
computation is carried out on a centralized server that collects
demand information from users. Instead, it is more desirable
that the computation is distributed to individual users. Among
others, Ma et al. [21] proposed a distributed charging strategy
based on the notion of valley-filling charging profiles, which
is guaranteed to be optimal when all vehicles have identical
(i.e., homogeneous) demand. Gan et al. [13] proposed a more
general algorithm that is optimal for nonhomogeneous demand
and allows asynchronous communication.

In order to solve the constrained optimization problem of
scheduling in a distributed manner, the server is required to
publish certain public information that is computed based on
the tentative demand collected from participating users. Charg-
ing demand often contains private information of the users. As a
simple example, zero demand from a charging station attached
to a single home unit is a good indication that the home owner
is away from home. Note that the public coordination signal
is received by everyone including potential adversaries whose
goal is to decode private user information from the public
signal, so that it is desirable to develop solutions for protecting
user privacy.

It has been long recognized that ad hoc solutions such as
anonymization of user data are inadequate to guarantee privacy
due to the presence of public side information. A famous case is
the reidentification of certain users from an anonymized dataset
published by Netflix, which is an American provider of on-
demand Internet streaming media. The dataset was provided
for hosting an open competition called the Netflix Prize for
finding the best algorithm to predict user ratings on films. It has
been reported that certain Netflix subscribers can be identified
from the anonymized Netflix prize dataset through auxiliary
information from the Internet Movie Database (IMDb) [22].
As such, providing rigorous solutions to preserving privacy has
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become an active area of research. In the field of systems and
control, recent work on privacy includes, among others, filtering
of streaming data [20], smart metering [26], traffic monitoring
[4], and privacy in stochastic control [32].

Recently, the notion of differential privacy proposed by
Dwork and her collaborators has received attention due to
its mathematically rigorous formulation [10]. Compared to
other privacy solutions such as k-anonymity [29] and secure
multiparty computation [1], differential privacy is robust to
arbitrary auxiliary information that an adversary may have
and thus provides a stronger privacy guarantee. The original
setting assumes that the sensitive user information is held by a
trustworthy party (often called curator in related literature), and
the curator needs to answer external queries (about the sensitive
user information) that potentially come from an adversary who
is interested in learning information belonging to some user.
For example, in EV charging, the curator is the central server
that aggregates user information, and the queries correspond to
public coordination signals. Informally, preserving differential
privacy requires that the curator must ensure that the results of
the queries remain approximately unchanged if data belonging
to any single user are modified. In other words, the adversary
should know little about any single user’s information from the
results of queries. A recent survey on differential privacy can be
found in [9]; there is also a recent textbook on this topic written
by Dwork and Roth [11].

Contributions: Motivated by the privacy concerns in EV
charging and recent advances in differential privacy, in this
paper, we investigate the problem of preserving differential
privacy in distributed constrained optimization. We present a
differentially private distributed algorithm for solving a class
of constrained optimization problems. The objective function
of the problem needs to be convex and Lipschitz continuously
differentiable, and it should only depend on the aggregate allo-
cation (i.e., the sum of individual allocations); the constraints
need to be convex and separable. The privacy guarantee of our
algorithm is proved using the adaptive composition theorem.
We show that the private optimization algorithm can be viewed
as an implementation of stochastic gradient descent [24]. Based
on previous results on stochastic gradient descent [27], we are
able to derive a bound for the suboptimality of our algorithm
and reveal the trade-off between privacy and performance of
the algorithm.

We illustrate the applicability of this general framework of
differentially private distributed constrained optimization in the
context of EV charging. To this end, we begin by computing the
sensitivity of the public signal with respect to changes in private
information. Specifically, this requires analyzing the sensitivity
of the projection operation onto the user-specified constraints.
Although such sensitivity can be difficult to compute for a
general problem, using tools in optimization theory, we are able
to derive an explicit expression of the sensitivity for the EV
charging example. Through numerical simulations, we show
that our algorithm is able to provide strong privacy guarantees
with little loss in performance when the number of participating
users (i.e., vehicles) is large.

Related Work: There is a large body of research work
on incorporating differential privacy into resource allocation
problems. A part of the work deals with indivisible resources
(or equivalently, games with discrete actions), including the

work by, among others, Kearns et al. [19], Rogers and Roth
[25], and Hsu et al. [15]. Our paper focuses on the case of
divisible resources and where private information is contained
in the constraints of the allocation problem.

In the work of differentially private resource allocation, it is
a common theme that the coordination signals are randomly
perturbed to avoid revealing private information of the users,
such as in the work by Huang et al. [17], Hsu et al. [16], and
our previous work on differentially convex optimization with
piecewise affine objectives [14]. Huang et al. [17] study the
problem of differentially private distributed convex optimiza-
tion in which the private user information is encoded in the
individual cost functions, whereas in our setting the private
user information is encoded in the individual constraints. The
recent work by Hsu et al. [16] on privately solving linear
programs is closely related to our work, since their setting
also assumes that the private information is contained in the
(affine) constraints. Our work can be viewed as a generalization
of their setting by extending the form of objective functions
and constraints. In particular, the objective function can be any
convex and Lipschitz continuously differentiable function that
depends on the aggregate allocation, and the constraints need
only to be convex and separable. For illustration, we show
how to implement the algorithm for a particular set of affine
constraints motivated by EV charging.

Paper Organization: The paper is organized as follows.
Section II introduces the necessary background on (nonprivate)
distributed optimization and, in particular, projected gradient
descent. Section III reviews the results in differential privacy
and gives a formal problem statement of differentially pri-
vate distributed constrained optimization. Section IV gives an
overview of the main results of the paper. Section V describes a
differentially private distributed algorithm that solves a general
class of constrained optimization problems. We also study
the trade-off between privacy and performance by analyzing
the suboptimality of the differentially private algorithm. In
Section VI, we illustrate the implementation of our algorithm
via a case study of EV charging. In particular, we compute
the sensitivity of the projection operation onto user-specified
constraints, which is required for implementing our private al-
gorithm. Section VII presents numerical simulations on various
aspects of the algorithm when being used in practice, including
choice of step size, number of iterations, and the trade-off
between privacy level and performance.

II. BACKGROUND: DISTRIBUTED

CONSTRAINED OPTIMIZATION

A. Notation

Denote the �p-norm of any x ∈ R
n by ‖x‖p. The subscript

p is dropped in the case of the �2-norm. For any nonempty
convex set C ⊂ R

n and x ∈ R
n, denote by ΠC(x) the projection

operator that projects x onto C in the �2-norm. Namely,ΠC(x) is
the solution of the following constrained least-squares problem:

min
x̂

. ‖x̂− x‖2 s.t. x̂ ∈ C. (1)

It can be shown that problem (1) is always feasible and has a
unique solution so that ΠC is well-defined. For any function f
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(not necessarily convex), denote by ∂f(x) the set of subgradi-
ents of f at x

∂f(x) :=
{
g : f(y) ≥ f(x) + gT (y − x) for all y

}
.

When f is convex and differentiable at x, the set ∂f(x)
becomes a singleton set whose only element is the gradient
∇f(x). For any function f , denote its range by range(f). For
any differentiable function f that depends on multiple variables
including x, denote by ∂xf the partial derivative of f with
respect to x. For any λ > 0, denote by Lap(λ) the zero-mean
Laplace probability distribution such that the probability den-
sity function of a random variable X obeying the distribution
Lap(λ) is pX(x) = (1/2λ) exp(−|x|/λ). The vector consisting
all ones is written as 1. The symbol � is used to represent
elementwise inequality: for any x, y ∈ R

n, we have x � y if
and only if xi ≤ yi for all 1 ≤ i ≤ n. For any positive integer n,
we denote by [n] the set {1, 2, . . . , n}.

B. Distributed Constrained Optimization

Before discussing privacy issues, we first introduce the nec-
essary background on distributed constrained optimization. We
consider a constrained optimization problem over n variables
r1, r2, . . . , rn ∈ R

T in the following form:

min
{ri}ni=1

. U

(
n∑

i=1

ri

)
s.t. ri ∈ Ci, i ∈ [n]. (2)

Throughout the paper, we assume that the objective function
U : RT → R in problem (2) is differentiable and convex, and
its gradient ∇U is L-Lipschitz in the �2-norm, i.e., there exists
L > 0 such that

‖∇U(x) −∇U(y)‖ ≤ L‖x− y‖ for all x, y.

The set Ci is assumed to be convex for all i ∈ [n]. For resource
allocation problems, the variable ri and the constraint set Ci are
used to capture the allocation and constraints on the allocation
for user/agent i.

Algorithm 1 Distributed projected gradient descent (with a
fixed number of iterations)

Input: U , {Ci}ni=1, K , and step sizes {αk}Kk=1.

Output: {r(K+1)
i }

n

i=1.

Initialize {r(1)i }
n

i=1 arbitrarily. For k = 1, 2, . . . ,K , repeat:

1) Compute p(k) := ∇U(
∑n

i=1 r
(k)
i ).

2) For i ∈ [n], update r(k+1)
i according to

r
(k+1)
i := ΠCi

(
r
(k)
i − αkp

(k)
)
. (3)

The optimization problem (2) can be solved iteratively using
projected gradient descent, which requires computing the gra-
dients of U with respect to each ri and projecting the gradients
onto the feasible set at each iteration. When the objective

function only depends on the sum
∑n

i=1 ri, it can be shown
that ∇riU is identical for all i, and we have ∇riU(

∑n
i=1 ri) =

∇U(
∑n

i=1 ri). As a consequence, the computational complex-
ity of the projected gradient descent is dominated by the pro-
jection operation and grows with n. For practical applications,
the number n can be quite large, so that it is desirable to distrib-
ute the projection operation to individual users. A distributed
version of the projected gradient descent method applied to
problem (2) is shown in Algorithm 1. The algorithm guarantees
that the output converges to the optimal solution as K → ∞
with proper choice of step sizes {αk}Kk=1 (see [13] for details
on how to choose αk).

III. PROBLEM FORMULATION

A. Privacy in Distributed Constrained Optimization

In many applications, the specifications of Ci may contain
sensitive information that user i wishes to keep undisclosed
from the public. In the framework of differential privacy, it
is assumed that an adversary can potentially collaborate with
some users in the database in order to learn about other user’s
information. Under this assumption, the distributed projected
descent algorithm (Algorithm 1) can lead to possible loss of
privacy of participating users for reasons described below. It
can be seen from Algorithm 1 that Ci affects r

(k)
i through (3)

and consequently also p(k). Since p(k) is broadcast publicly to
every charging station, with enough side information (such as
collaborating with some participating users), an adversary who
is interested in learning private information about some user i
may be able to infer information about Ci from the public

signals {p(k)}Kk=1. We will later illustrate the privacy issues in
the context of EV charging.

B. Differential Privacy

Our goal is to modify the original distributed projected gra-
dient descent algorithm (Algorithm 1) to preserve differential
privacy. Before giving a formal statement of our problem, we
first present some preliminaries on differential privacy. Differ-
ential privacy considers a set (called database) D that contains
private user information to be protected. For convenience, we
denote by D the universe of all possible databases of interest.
The information that we would like to obtain from a database
D is given by q(D) for some mapping q (called query) that acts
on D. In differential privacy, preserving privacy is equivalent to
hiding changes in the database. Formally, changes in a database
can be defined by a symmetric binary relation between two
databases called an adjacency relation, which is denoted by
Adj(·, ·); two databases D and D′ that satisfy Adj(D,D′) are
called adjacent databases.

Definition 1 (Adjacent Databases): Two databases
D = {di}ni=1 and D′ = {d′i}

n
i=1 are said to be adjacent if there

exists i ∈ [n] such that dj = d′j for all j �= i.
A mechanism that acts on a database is said to be differen-

tially private if it is able to ensure that two adjacent databases
are nearly indistinguishable from the output of the mechanism.

Definition 2 (Differential Privacy [10]): Given ε≥0,
a mechanism M preserves ε-differential privacy if for all
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R⊆ range (M) and all adjacent databases D and D′ in D, it
holds that

P (M(D) ∈ R) ≤ eεP (M(D′) ∈ R) . (4)

The constant ε indicates the level of privacy: smaller ε im-
plies higher level of privacy. The notion of differential privacy
promises that an adversary cannot tell from the output of M
with high probability whether data corresponding to a single
user in the database have changed. It can be seen that any
nonconstant differentially mechanism is necessarily random-
ized, i.e., for a given database, the output of such a mechanism
obeys a certain probability distribution. Finally, although it is
not explicitly mentioned in Definition 2, a mechanism needs
to be an approximation of the query of interest in order to be
useful. For this purpose, a mechanism is normally defined in
conjunction with some query of interest; a common notation
is to include the query q of interest in the subscript of the
mechanism as Mq.

C. Problem Formulation: Differentially Private Distributed
Constrained Optimization

Recall that our goal of preserving privacy in distributed
optimization is to protect the user information in Ci, even

if an adversary can collect all public signals {p(k)}Kk=1. To
mathematically formulate our goal under the framework of
differential privacy, we define the database D as the set {Ci}ni=1
and the query as the K-tuple consisting of all the gradients
p = (p(1), p(2), . . . , p(K)). Without loss of generality, we con-
sider the case where C1, C2, . . . , Cn belong to a family of sets
parameterized by β ∈ R

s. Namely, there exists a parameterized
set C such that for all i ∈ [n], we can write Ci = C(βi) for
some βi ∈ R

s. We also assume that there exists a metric ρ :
R

s × R
s → R+, so that we can define the distance ρC(Ci, C′

i)
between any Ci = C(βi) and C′

i = C(β′
i) using the metric ρ as

ρC (Ci, C′
i) := ρ (βi, β

′
i) .

For any given δC ∈ R+, we define and use throughout the paper
the following adjacency relation between any two databases D
and D′ in the context of distributed constrained optimization.

Definition 3 (Adjacency Relation for Constrained Opti-
mization): For any databases D = {Ci}ni=1 and D′ = {C′

i}
n
i=1,

it holds that Adj(D,D′) if and only if there exists i ∈ [n] such
that ρC(Ci, C′

i) ≤ δC, and Cj = C′
j for all j �= i.

The constant δC is chosen based on the privacy requirement,
i.e., the kind of user activities that should be kept private. Using
the adjacency relation described in Definition 3, we state in
the following the problem of designing a differentially private
distributed algorithm for constrained optimization.

Problem 4 (Differentially Private Distributed Constrained
Optimization): Find a randomized mechanism Mp that ap-
proximates the gradients p = (p(1), p(2), . . . , p(K)) (defined in
Algorithm 1) and preserves ε-differential privacy under the
adjacency relation described in Definition 3. Namely, for any
adjacent databases D and D′, and any R ⊆ range(Mp), the
mechanism Mp should satisfy

P (Mp(D) ∈ R) ≤ eεP (Mp(D
′) ∈ R) .

D. Example Application: EV Charging

In EV charging, the goal is to charge n vehicles over a
horizon of T time steps with minimal influence on the power
grid. For simplicity, we assume that each vehicle belongs to
one single user. For any i ∈ [n], the vector ri ∈ R

T represents
the charging rates of vehicle i over time. In the following, we
will denote by ri(t) the tth component of ri. Each vehicle
needs to be charged a given amount of electricity Ei > 0 by the
end of the scheduling horizon; in addition, for any t ∈ [T ], the
charging rate ri(t) cannot exceed the maximum rate r̄i(t) for
some given constant vector r̄i ∈ R

T . Under these constraints
on ri, the set Ci is described as follows:

0 � ri � r̄i, 1T ri = Ei. (5)

The tuple (r̄i, Ei) is called the charging specification of user i.
Throughout the paper, we assume that r̄i and Ei satisfy

1T r̄i ≥ Ei for all i ∈ [n] (6)

so that the constraints (5) are always feasible.
The objective function U in problem (2) quantifies the in-

fluence of a charging schedule {ri}ni=1 on the power grid.
We choose U as follows for the purpose of minimizing load
variance:

U

(
n∑

i=1

ri

)
=

1

2

∥∥∥∥∥d+
n∑

i=1

ri
m

∥∥∥∥∥
2

. (7)

In (7), m is the number of households, which is assumed
proportional to the number of EVs, i.e., there exists γ such that
n/m = γ; then, the quantity

∑n
i=1 ri/m becomes the aggre-

gate EV load per household. The vector d ∈ R
T is the base

load profile (per household) incurred by loads in the power
grid other than EVs, so that U(

∑n
i=1 ri) quantifies the variation

of the total load including the base load and EVs. It can
be verified that U is convex and differentiable, and ∇U is
Lipschitz continuous.

The set Ci (defined by r̄i and Ei) can be associated with
personal activities of the owner of vehicle i in the following
way. For example, r̄i(t) = 0 may indicate that the owner is
temporarily away from the charging station (which may be co-
located with the owner’s residence) so that the vehicle is not
ready to be charged. Similarly, Ei = 0 may indicate that the
owner is not actively using the vehicle so that the vehicle does
not need to be charged.

We now illustrate why publishing the exact gradient p(k)

can potentially lead to a loss of privacy. The gradient p(k) can
be computed as p(k) = (1/m)(d+

∑n
i=1 ri/m). Recall that

the goal of differential privacy is to provide a strong privacy
guarantee in the presence of any auxiliary information that an
adversary may have. In the worst case, an adversary may be able
to collaborate with all but one user i and obtain r

(k)
j for all j �= i

in the database. Then, the adversary can infer r(k)i exactly from

p(k), even though user i did not reveal his r(k)i to the adversary.

After obtaining r
(k)
i , the adversary can obtain information on

Ci by, for example, computing Ei = 1T r
(k)
i .

The adjacency relation in the case of EV charging is defined
as follows. Notice that, in the case of EV charging, the param-
eter βi that parameterizes the set Ci is given by βi = (r̄i, Ei), in
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which (r̄i, Ei) is the charging specifications of user i as defined
in (5).

Definition 5 (Adjacency Relation for EV
Charging): For any databases D = {Ci(r̄i, Ei)}ni=1 and
D′ = {C′

i(r̄
′
i, E

′
i)}

n
i=1, we have Adj(D,D′) if and only if there

exists i ∈ [n] such that

‖r̄i − r̄′i‖1 ≤ δr, |Ei − E′
i| ≤ δE (8)

and r̄j = r̄′j , Ej = E′
j for all j �= i.

In terms of choosing δE and δr, one useful choice for δE is
the maximum amount of energy an EV may need; this choice
of δE can be used to hide the event corresponding to whether a
user needs to charge his vehicle.

IV. OVERVIEW OF MAIN RESULTS

A. Results for General Constrained Optimization
Problems

In Section V, we present the main algorithmic result of this
paper, a differentially private distributed algorithm (Algorithm 2)
for solving the constrained optimization problem (2). The
constant Δ that appears in the input of Algorithm 2 is defined as

Δ := max
i∈[n]

max
{∥∥ΠCi(r) −ΠC′

i
(r)

∥∥ :

r ∈ R
T , Ci and C′

i satisfy ρC (Ci, C′
i) ≤ δC

}
. (9)

In other words, Δ can be viewed as a bound on the global
�2-sensitivity of the projection operator ΠCi to changes in Ci
for all i ∈ [n]. Later, we will illustrate how to compute Δ using
the case of EV charging.

Algorithm 2 Differentially private distributed projected gra-
dient descent

Input: U , L, {Ci}ni=1, K , {αk}Kk=1, η ≥ 1, Δ, and ε.

Output: {r̂(K+1)
i }

n

i=1.

Initialize {r(1)i }
n

i=1 arbitrarily. Let r̂(1)i = r
(1)
i for all i ∈ [n]

and θk = (η + 1)/(η + k) for k ∈ [K].
For k = 1, 2, . . . ,K , repeat:

1) If k = 1, then set wk = 0; else draw a random vec-
tor wk ∈ R

T from the distribution (proportional to)
exp(−(2ε‖wk‖/K(K − 1)LΔ))

2) Compute p̂(k) := ∇U(
∑n

i=1 r
(k)
i ) + wk.

3) For i ∈ [n], compute:

r
(k+1)
i :=ΠCi

(
r
(k)
i − αkp̂

(k)
)

r̂
(k+1)
i := (1− θk)r̂

(k)
i + θkr

(k+1)
i .

Compared to the (nonprivate) distributed algorithm
(Algorithm 1), the key difference in Algorithm 2 is the intro-
duction of random perturbations in the gradients (step 2) that
convert p(k) into a noisy gradient p̂(k). The noisy gradients
(p̂(1), p̂(2), . . . , p̂(K)) can be viewed as a randomized mechanism
Mp that approximates the original gradients p=(p(1), p(2), . . . ,

p(K)). In Section V, we will prove that the noisy gradients (as a
mechanism)Mp :=(p̂(1), p̂(2), . . . , p̂(K)) preserve ε-differential
privacy and hence solve Problem 4.

Theorem 6: Algorithm 2 ensures that Mp :=

(p̂(1), p̂(2), . . . , p̂(K)) preserves ε-differential privacy under the
adjacency relation given by Definition 3.

Algorithm 2 can be viewed as an instance of stochastic
gradient descent that terminates after K iterations. We will
henceforth refer to Algorithm 2 as differentially private dis-
tributed projected gradient descent. The step size αk is chosen
as αk = c/

√
k for some c > 0. The purpose of the additional

variables {r̂(k)i }
K

k=1 is to implement the polynomial-decay
averaging method in order to improve the convergence rate,
which is a common practice in stochastic gradient descent [27];

introducing {r̂(k)i }
K

k=1 does not affect privacy. The parameter
η ≥ 1 is used for controlling the averaging weight θk. Details
on choosing η can be found in Shamir and Zhang [27].

Like most iterative optimization algorithms, stochastic gra-
dient descent only converges in a probabilistic sense as the
number of iterations K → ∞. In practice, the number of it-
erations is always finite, so that it is desirable to analyze the
suboptimality for a finite K . In Section V, we provide an
analysis on the expected suboptimality of Algorithm 2.

Theorem 7: The expected suboptimality of Algorithm 2 after
K iterations is bounded as follows:

E

[
U

(
n∑

i=1

r̂
(K+1)
i

)
− U ∗

]

≤ O
(
η
√
nρ

(
G√
K

+

√
2TK

3
2LΔ

2ε

))
(10)

where U ∗ is the optimal value of problem (2), and

ρ = max

⎧⎨⎩
√√√√ n∑

i=1

‖ri‖2 : ri ∈ Ci, i ∈ [n]

⎫⎬⎭
G = max

{∥∥∥∥∥∇U

(
n∑

i=1

ri

)∥∥∥∥∥ : ri ∈ Ci, i ∈ [n]

}
.

Theorem 7 reveals an important trade-off in choosing the
number of iterations K when running the differentially private
optimization algorithm (Algorithm 2). If K is too small, then
it will affect the convergence of gradient descent. On the other
hand, if K is too large, then the amount of noise required by
differential privacy will be too large and affect convergence
as well.

B. Results for the Case of EV Charging

Having presented and analyzed the algorithm for a general
distributed constrained optimization problem, we then illustrate
how Algorithm 2 can be applied to the case of EV charging in
Section VI. In particular, we demonstrate how to compute Δ
in the case of EV charging. Theorem 8 shows that Δ can be
bounded by δr and δE that appear in (8).
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Theorem 8: Consider the example of EV charging (as
described in Section III-D). For any i ∈ [n], the global
�2-sensitivity of the projection operator ΠCi(r̄i,Ei) with respect
to changes in (r̄i, Ei) is bounded by

Δ ≤ 2δr + δE

where δr and δE are specified in the adjacency relation given
by (8).

The suboptimality analysis given in Theorem 7 can be further
refined in the case of EV charging. The special form of U given
by (7) allows obtaining an upper bound on suboptimality as
given in Corollary 9 below.

Corollary 9: For the cost function U given by (7), the
expected suboptimality of Algorithm 2 is bounded as follows:

E

[
U

(
n∑

i=1

r̂
(K+1)
i

)
− U ∗

]
≤ O

(
ηT

1
4

(
Δ

nε

) 1
4

)
. (11)

This upper bound shows the trade-off between privacy and
performance. As ε decreases, more privacy is preserved but at
the expense of increased suboptimality. On the other hand, this
increase in suboptimality can be mitigated by introducing more
participating users (i.e., by increasing n), which coincides with
the common intuition that it is easier to achieve privacy as the
number of users n increases.

V. DIFFERENTIALLY PRIVATE DISTRIBUTED

PROJECTED GRADIENT DESCENT

In this section, we give the proof that the modified distributed
projected gradient descent algorithm (Algorithm 2) preserves
ε-differential privacy. In the proof, we will extensively use
results from differential privacy such as the Laplace mechanism
and the adaptive sequential composition theorem.

A. Review: Results From Differential Privacy

The introduction of additive noise in step 2 of Algorithm 2
is based on a variant of the widely used Laplace mechanism
in differential privacy. The Laplace mechanism operates by in-
troducing additive noise according to the �p-sensitivity (p ≥ 1)
of a numerical query q : D → R

m (for some dimension m),
which is defined as follows.

Definition 10 (�p-Sensitivity): For any query q : D → R
m,

the �p-sensitivty of q under the adjacency relation Adj is
defined as

Δq :=max
{
‖q(D)− q(D′)‖p : D,D′ ∈D s.t. Adj(D,D′)

}
.

Note that the �p-sensitivity of q does not depend on a specific
database D. In this paper, we will use the Laplace mechanism
for bounded �2-sensitivity.

Proposition 11 (Laplace Mechanism [10]): Consider a
query q : D → R

m whose �2-sensitivity is Δq . Define the
mechanism Mq as Mq(D) := q(D) + w, where w is an m-
dimensional random vector whose probability density function
is given by pw(w) ∝ exp(−ε‖w‖/Δq). Then, the mechanism
Mq preserves ε-differential privacy.

As a basic building block in differential privacy, the Laplace
mechanism allows construction of the differentially private

distributed projected gradient descent algorithm described in
Algorithm 2 through adaptive sequential composition.

Proposition 12 (Adaptive Seqential Composition [11]):
Consider a sequence of mechanisms {Mk}Kk=1, in which the
output of Mk may depend on M1,M2, . . . ,Mk−1 as described
below:

Mk(D) = Mk (D,M1(D),M2(D), . . . ,Mk−1(D)) .

Suppose Mk(·, a1, a2, . . . , ak−1) preserves εk-differential
privacy for any a1 ∈ range(M1), . . . , ak−1 ∈ range(Mk−1).
Then, the K-tuple mechanism M := (M1,M2, . . . ,MK)

preserves ε-differential privacy for ε =
∑K

k=1 εk.

B. Proof That Algorithm 2 Preserves ε-Differential
Privacy

Using the adaptive sequential composition theorem, we can
show that Algorithm 2 preserves ε-differential privacy. We can
view the K-tuple mechanism Mp := (p̂(1), p̂(2), . . . , p̂(K)) as

a sequence of mechanisms {p̂(k)}Kk=1. The key is to compute

the �2-sensitivity of p(k) := ∇U(
∑n

i=1 r
(k)
i ), denoted by Δ(k),

when the outputs of p̂(1), p̂(2), . . . , p̂(k−1) are given, so that we
can obtain a differentially private mechanism p̂(k) by applying
the Laplace mechanism on p(k) according to Δ(k).

Lemma 13: In Algorithm 2, when the outputs of
p̂(1), p̂(2), . . . , p̂(k−1) are given, the �2-sensitivity of p(k) :=

∇U(
∑n

i=1 r
(k)
i ) satisfies Δ(k) = (k − 1)LΔ.

Proof: See Appendix I. �
With Lemma 13 at hand, we now show that Algorithm 2

preserves ε-differential privacy (Theorem 6, Section IV).
Proof (of Theorem 6): For any k ∈ [K], when the outputs

of p̂(1), p̂(2), . . . , p̂(k−1) are given, we know from Proposition 11
that p̂(k) preserves εk-differential privacy, where εk satisfies
ε1 = 0 and for k > 1

εk
Δ(k)

=
2ε

K(K − 1)LΔ
.

Use the expression of Δ(k) from Lemma 13 to obtain

εk =
2(k − 1)ε

K(K − 1)
.

Using the adaptive sequential composition theorem, we know
that the privacy of Mp := (p̂(1), p̂(2), . . . , p̂(K)) is given by∑K

k=1 εk = (2ε/K(K − 1))
∑K

k=1(k − 1) = ε, which com-
pletes the proof. �

C. Suboptimality Analysis: Privacy–Performance
Trade-Off

As a consequence of preserving privacy, we only have access

to noisy gradients {p̂(k)}Kk=1 rather than the exact gradients

{p(k)}Kk=1. Recall that the additive noise wk in step 2 of
Algorithm 2 has zero mean. In other words, the noisy gradient
p̂(k) is an unbiased estimate of p(k), which allows us to view
Algorithm 2 as an instantiation of stochastic gradient descent.
As we mentioned in Section IV, it is in fact a variant of sto-
chastic gradient descent that uses polynomial-decay averaging
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for better convergence. The stochastic gradient descent method
(with polynomial-decay averaging), which is described in
Algorithm 3, can be used for solving the following optimization
problem:

min
x

. f(x) s.t. x ∈ X

where x ∈ R
m and X ⊂ R

m for certain dimensions m.
Proposition 14 (due to Shamir and Zhang [27]) gives an upper
bound of the expected suboptimality after finitely many steps
for the stochastic gradient descent algorithm (Algorithm 3).

Algorithm 3 Stochastic gradient descent with polynomial-
decay averaging

Input: f , X , K , {αk}Kk=1, and η ≥ 1.
Output: x̂(K+1).
Initialize x(1) and k = 1. Let x̂(1) = x(1) and θk = (η +
1)/(η + k) for k ∈ [K].
For k = 1, 2, . . . ,K , repeat:

1) Compute an unbiased subgradient ĝk of f at x(k), i.e.,
E[ĝk] ∈ ∂f(x(k)).

2) Update x(k+1) := ΠX (x
(k) − αkĝk) and x̂(k+1) :=

(1− θk)x̂
(k) + θkx

(k+1).

Proposition 14 (Shamir and Zhang [27]): Suppose X ⊂
R

m is a convex set and f : Rm → R is a convex function. As-
sume that there exist ρ and Ĝ such that supx,x′∈X ‖x− x′‖ ≤ ρ

and max1≤k≤K E‖ĝk‖2 ≤ Ĝ2 for {ĝk}Kk=1 given by step 1 of
Algorithm 3. If the step sizes are chosen as αk = c/

√
k for

some c > 0, then for any K > 1, it holds that

E

(
f(x̂(K+1))− f ∗

)
≤ O

(
η(ρ2/c+ cĜ2)√

K

)
(12)

where f ∗ = infx∈X f(x).
A tighter upper bound can be obtained from (12) by optimiz-

ing the right-hand side of (12) over the constant c.
Corollary 15: Under the same setting as Proposition 14, the

suboptimality bound for Algorithm 3 is given by

E

(
f(x̂(K+1))− f ∗

)
≤ O

(
η
ρĜ√
K

)
(13)

which is achieved by choosing c = ρ/Ĝ.
By applying Corollary 15, we are able obtain the bound of

suboptimality for Algorithm 2 as given by Theorem 7.
Proof (of Theorem 7): In order to apply Corollary 15, we

need to compute ρ and Ĝ for Algorithm 2. The constant ρ can
be obtained as

ρ = max

⎧⎨⎩
√√√√ n∑

i=1

‖ri‖2 : ri ∈ Ci, i ∈ [n]

⎫⎬⎭ .

Recall from Section II-B that, for all i ∈ [n], the gradient of
the objective function with respect to r

(k)
i is identical, and

∇
r
(k)
i

U(
∑n

i=1 r
(k)
i ) = ∇U(

∑n
i=1 r

(k)
i ). As a consequence, an

unbiased stochastic gradient ĝk of the objective function

U(
∑n

i=1 r
(k)
i ) with respect to (r

(k)
1 , r

(k)
2 , . . . , r

(k)
n ) is given by

ĝk = [p̂(k), p̂(k), . . . , p̂(k)], which is formed by repeating p̂(k)

for n times. Using the definition Ĝ2 := maxk E‖ĝk‖2, we have

Ĝ2 = n ·maxk E‖p̂(k)‖
2
. Substituting the expression of p̂(k)

into Ĝ, we have

Ĝ =
√
n · max

k∈[K]

√
‖p(k)‖2 + E‖wk‖2

≤
√
n · max

k∈[K]

{
‖p(k)‖+

√
E‖wk‖2

}
≤
√
n
(
G+

√
2TK2LΔ/2ε

)
where in the last step we have used the fact that

E‖wk‖2 = var‖wk‖2 + (E‖wk‖)2

=T

(
Δ(k)

εk

)2

+ T 2

(
Δ(k)

εk

)2

≤ 2T 2

(
Δ(k)

εk

)2

Δ(k)

εk
=

K(K − 1)LΔ

2ε
≤ K2LΔ

2ε
.

Substitute the expression of Ĝ into (13) to obtain the result. �
As K increases, the first term in (10) decreases, whereas

the second term in (10) increases. It is then foreseeable that
there exists an optimal choice of K that minimizes the expected
suboptimality.

Corollary 16: By choosing K = (
√
2Gε/3TLΔ)1/2, the

expected suboptimality of Algorithm 2 is bounded as follows:

E

[
U

(
n∑

i=1

r̂
(K+1)
i

)
− U ∗

]
≤ O

(
ηT

1
4n

1
2 ρ(G3LΔ/ε)

1
4

)
(14)

where U ∗, ρ, and G are given by Theorem 7.
Proof: The result can be obtained by optimizing the right-

hand side of (10) over K . �
However, since it is generally impossible to obtain a tight

bound for ρ and Ĝ, optimizing K according to Corollary 16
usually does not give the best K in practice; numerical simu-
lation is often needed in order to find the best K for a given
problem. We will demonstrate how to choose K optimally later
using numerical simulations in Section VII.

VI. SENSITIVITY COMPUTATION:
THE CASE OF EV CHARGING

So far, we have shown that Algorithm 2 (specifically, the
mechanism Mp consisting of the gradients (p̂(1), p̂(2), . . . ,

p̂(K)) that are broadcast to every participating user) preserves
ε-differential privacy. The magnitude of the noise wk intro-
duced to the gradients depends on Δ, which is the sensitivity
of the projection operator ΠCi as defined in (9). In order to
implement Algorithm 2, we need to compute Δ explicitly. In
the next, we will illustrate how to compute Δ using the case
of EV charging as an example. We will give an expression for
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Δ that depends on the constants δr and δE appearing in the
adjacency relation (8). Since δr and δE are part of the privacy
requirement, one can choose Δ accordingly once the privacy
requirement has been determined.

A. Overview

The input of Algorithm 2 includes the constant Δ as de-
scribed by (9), which bounds the global �2-sensitivity of
the projection operator ΠCi(r̄i,Ei) with respect to changes in
(r̄i, Ei). In this section, we will derive an explicit expression
of Δ for the case of EV charging. Using tools in sensitivity
analysis of optimization problems, we are able to establish the
relationship between Δ and the constants δr and δE that appear
in the adjacency relation (8) used in EV charging.

Recall that for any r ∈ R
T , the output of the projection op-

eration ΠCi(r̄i,Ei)(r) is the optimal solution to the constrained
least-squares problem

min
ri

.
1

2
‖ri − r‖2

s.t. 0 � ri � r̄i, 1T ri = Ei. (15)

Define the �2-sensitivity for a fixed r as

Δr := max
i∈[n]

max
{∥∥ΠCi(r̄i.Ei)(r) −ΠCi(r̄′

i,E
′
i)
(r)

∥∥ :

(r̄i, Ei) and (r̄′i, E
′
i) satisfy (8)} .

It can be verified that Δ = maxr∈RT Δr. In the following, we
will establish the relationship between Δr and (δr, δE); we
will also show that Δr does not depend on the choice of r, so
that Δ = Δr for any r ∈ R

T . For notational convenience, we
consider the following least-squares problem:

min
x

.
1

2
‖x− x0‖2

s.t. 0 � x � a, 1Tx = b (16)

where x0, a, and b are given constants. If we let

x0 = r0, a = r̄i, b = Ei

then problem (16) is mapped back to problem (15). We also
have 1T a ≥ b based on the assumption as described in (6).
Denote the optimal solution of problem (16) by x∗(a, b). Since
our purpose is to derive an expression for Δr when r is fixed,
we also treat x0 as fixed and have dropped the dependence of
x∗ on x0. Our goal is to bound the global solution sensitivity
with respect to changes in a and b, i.e.,

‖x∗(a′, b′)− x∗(a, b)‖ (17)

for any (a, b) and (a′, b′). We will proceed by first bounding
the local solution sensitivities ∂ax

∗ and ∂bx
∗ with respect to

a and b. Then, we will obtain a bound on the global solution,
sensitivity (17) through integration of ∂ax∗ and ∂bx

∗.

B. Local Solution Sensitivity of Nonlinear
Optimization Problems

We begin by reviewing existing results on computing local
solution sensitivity of nonlinear optimization problems. Con-

sider a generic nonlinear optimization problem parametrized by
θ ∈ R described as follows:

min
x∈Rn

. f(x; θ)

s.t. gi(x; θ) ≤ 0, i ∈ [p]

hj(x; θ) = 0, j ∈ [q] (18)

whose Lagrangian can be expressed as

L(x, λ, ν; θ) = f(x; θ) +

p∑
i=1

λigi(x; θ) +

q∑
j=1

νjhj(x; θ)

where λ and ν are the Lagrange multipliers associated with
constraints {gi}pi=1 and {hj}qj=1, respectively. If there exists
a set Θ ⊂ R such that the optimal solution is unique for all
θ ∈ Θ, then the optimal solution of problem (18) can be defined
as a function x∗ : Θ → R

n. This condition on the uniqueness
of optimal solution holds for problem (16), since the objective
function therein is strictly convex.

Denote by λ∗ and ν∗ the optimal Lagrange multipliers.
Under certain conditions described in Proposition 17 below,
the partial derivatives ∂θx∗, ∂θλ∗, and ∂θν

∗ exist; these partial
derivatives will also be referred to as local solution sensitivity of
problem (18).

Proposition 17 (Fiacco [12]): Let (x∗, λ∗, ν∗) be the primal-
dual optimal solution of problem (18). Suppose the following
conditions hold.

1) x∗ is a locally unique optimal primal solution.
2) The functions f , {gi}pi=1, and {hj}qj=1 are twice contin-

uously differentiable in x and differentiable in θ.
3) The gradients {∇gi(x

∗) : gi(x
∗) = 0, i ∈ [p]} of the ac-

tive constraints and the gradients {∇hj(x
∗) : j ∈ [q]} are

linearly independent.
4) Strict complementary slackness holds: λ∗

i > 0 when
gi(x

∗, θ) = 0 for all i ∈ [p].

Then the local sensitivity (∂θx
∗, ∂θλ

∗, ∂θν
∗) of problem (18)

exists and is continuous in a neighborhood of θ. Moreover,
(∂θx

∗, ∂θλ
∗, ∂θν

∗) is uniquely determined by the following:

∇2L · ∂θx∗ +

p∑
i=1

∇gi · ∂θλ∗
i +

q∑
j=1

∇hj · ∂θν∗j + ∂θ(∇L)=0

λi∇gi · ∂θx∗ + gi∂θλ
∗
i + λ∗

i∂θgi = 0, i ∈ [p]

∇hj · ∂θx∗ + ∂θhj = 0, j ∈ [q].

C. Solution Sensitivity of the Distributed
EV Charging Problem

We begin by computing the local solution sensitivities ∂ax∗

and ∂bx
∗ for problem (16) using Proposition 17. After ∂ax

∗

and ∂bx
∗ are obtained, the global solution sensitivity (17) can

be obtained through integration of the local sensitivity. For
convenience, we compute the global solution sensitivity in a
and b separately and combine the results in the end in the proof
of Theorem 8.

One major difficulty in applying Proposition 17 is that it
requires strict complementary slackness, which unfortunately
does not hold for all values of a and b. We will proceed by
deriving the local solution sensitivities assuming that strict
complementary slackness holds. Later, we will show that strict
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complementary slackness only fails at finitely many locations
on the integration path, so that the integral remains unaffected.

We shall proceed by computing the solution sensitivity for
a and b separately. First of all, we assume that a is fixed and
solve for the global solution sensitivity of x∗ in b, defined as

‖x∗(a, b′)− x∗(a, b)‖ . (19)

When strict complementary slackness holds, the following
lemma gives properties of the local solution sensitivity of
problem (16) with respect to b.

Lemma 18 (Local Solution Sensitivity in b): When strict
complementary slackness holds, the local solution sensitivity
∂bx

∗ of problem (16) satisfies

∂bx
∗ � 0 and 1T∂bx

∗ = 1.

Proof: See Appendix II-A. �
The following lemma shows that the condition is only

violated for a finite number of values of b, so that it will
still be possible to obtain the global sensitivity (19) through
integration.

Lemma 19: The set of possible values of b in problem (16)
for which strict complementary slackness fails to hold is finite.

Proof: See Appendix II-B. �
The implication of Lemma 19 is that the local solution sen-

sitivity ∂bx
∗ exists everywhere except at finitely many location.

It is also possible to show that the optimal solution x∗(a, b) is
continuous in b (cf. Berge [2, p. 116], Dantzig et al. [6], or
Tropp et al. [31, App. I]); the continuity of x∗(a, b) in b and
together with Lemma 19 imply that ∂bx∗ is Riemann integrable
so that we can obtain the global solution sensitivity through
integration.

Proposition 20 (Global Solution Sensivitity in b): For any
a, b, and b′ that satisfy 1Ta ≥ b and 1Ta ≥ b′, we have

‖x∗(a, b′)− x∗(a, b)‖1 = |b′ − b|.

Proof: Without loss of generality, assume b′ > b. Since
x∗(a, b) is continuous in b, and the partial derivative ∂bx∗ exists
except at finitely many points according to Lemma 19, we know
that ∂bx∗

i is Riemann integrable for all i ∈ [T ], so that

x∗
i (a, b

′)− x∗
i (a, b) =

b′∫
b

∂bx
∗
i (a, b) db

according to the fundamental theorem of calculus. Using the
fact ∂bx∗

i ≥ 0 as given by Lemma 18, we have

x∗
i (a, b

′)− x∗
i(a, b) ≥ 0.

Then, we have

‖x∗(a, b′)− x∗(a, b)‖1 =

T∑
i=1

|x∗
i (a, b

′)− x∗
i (a, b)|

=

T∑
i=1

(x∗
i (a, b

′)− x∗
i (a, b))

=

b′∫
b

1T∂bx
∗(a, b) db.

Using the fact 1T∂bx
∗ = 1 given by Lemma 18, we obtain

‖x∗(a, b′)− x∗(a, b)‖1 = b′ − b = |b′ − b|.

�
Having computed the solution sensitivity in b, we now as-

sume that b is fixed and solve for the global solution sensitivity
of x∗ in a, defined as

‖x∗(a′, b)− x∗(a, b)‖ . (20)

When strict complementary slackness holds, the following
lemma gives properties of the local solution sensitivity of
problem (16) with respect to a.

Lemma 21 (Local Solution Sensivitity in a): When strict
complementary slackness holds, the local solution sensitivity
∂ax

∗ of problem (16) satisfies

T∑
i=1

‖∂ai
x∗‖1 ≤ 2.

Proof: See Appendix II-C. �
Similar to computing the sensitivity in b, we can obtain

the global solution sensitivity in a by integration of the local
sensitivity. For convenience, we choose the integration path L
from any a to a′ such that only one component of a is varied at
a time. Namely, the path L is given by

L : (a1, a2, . . . , aT ) → (a′1, a2, . . . , aT ) → · · ·

→ (a′1, a
′
2, . . . , a

′
T ) . (21)

For convenience, we also define the subpaths L1, L2, . . . , LT

such that

Li :
(
a′1, . . . ,a

′
i−1, ai, . . . ,aT

)
→

(
a′1, . . . ,a

′
i−1, a

′
i, . . . ,aT

)
. (22)

It is also possible to establish the fact that ∂ax∗ exists excepts
for a finite number of locations along the integration path L.
Note that we do not need to check whether strict complemen-
tary slackness holds for the constraint xi ≥ 0, since in this case
∂ai

x∗ always exists (in fact, ∂ai
x∗ = 0); instead, we only need

to check strict complementary slackness

μ∗
i > 0 when x∗

i = ai for all i (23)

associated with the constraint x � a.
Lemma 22: When constrained on the integration path L

given by (21), the set of possible values of a in problem (16) for
which the strict complementary slackness condition (23) fails
to hold is finite.

Proof: See Appendix II-D. �
Lemma 22 guarantees that ∂ax∗ is Riemann integrable along

L, so that we can obtain the global solution sensitivity (20)
through integration.

Proposition 23 (Global Solution Sensivitity in a): For any
given a, a′, and b that satisfy 1Ta ≥ b and 1Ta′ ≥ b, we have

‖x∗(a′, b)− x∗(a, b)‖1 ≤ 2‖a′ − a‖1.

Proof: Similar to the proof of Proposition 20, we can
show that ∂ax∗

i is Riemann integrable using both Lemma 22
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and the fact that x∗ is continuous in a. Then, we can define

Iij :=

∫
Lj

∂ax
∗
i (a, b) · d�

which is the line integral of the vector field ∂aj
x∗
i(·, b) along

the path Lj . Define xa
ij := ∂aj

x∗
i (·, b). Using the definition of

Lj as given by (22), we can write Iij as

Iij =

a′
j∫

aj

xa
ij

(
a′1, a

′
2, . . . , a

′
j−1, aj , . . . , aT

)
daj .

Then, we have

x∗
i (a

′, b)− x∗
i (a, b) =

∫
L

∂ax
∗
i (a, b) · d� =

T∑
j=1

Iij

and consequently

|x∗
i (a

′, b)− x∗
i (a, b)| ≤

T∑
j=1

|Iij |.

Substituting the expression of |x∗
i(a

′, b)− x∗
i (a, b)| into the the

global sensitivity expression (20), we obtain

‖x∗(a′, b)− x∗(a, b)‖1 =

T∑
i=1

|x∗
i (a

′, b)− x∗
i(a, b)|

≤
T∑
i=1

T∑
j=1

|Iij |=
T∑

j=1

T∑
i=1

|Iij |. (24)

Note that we have

|Iij | ≤
āj∫

aj

∣∣xa
ij

(
a′1, . . . , a

′
j−1, aj , . . . , aT

)∣∣ daj

where aj := min(aj , a
′
j) and āj := max(aj , a

′
j), so that

T∑
i=1

|Iij | ≤
T∑

i=1

āj∫
aj

∣∣xa
ij

(
a′1, . . . , a

′
j−1, aj, . . . , aT

)∣∣ daj

=

āj∫
aj

T∑
i=1

∣∣xa
ij

(
a′1, . . . , a

′
j−1, aj, . . . , aT

)∣∣ daj

=

āj∫
aj

∥∥∂aj
x∗ ((a′1, . . . , a′j−1, aj , . . . , aT

)
, b
)∥∥

1
daj

:= Īj .

Using Lemma 21, we can show that Īj satisfies

Īj ≤
āj∫

aj

2 daj = 2
∣∣a′j − aj

∣∣ .
Substitute the above into (24) to obtain

‖x∗(a′, b)− x∗(a, b)‖1 ≤ 2

T∑
j=1

∣∣a′j − aj
∣∣ = 2‖a′ − a‖1

which completes the proof. �

We are now ready to prove Theorem 8 using results from
Propositions 20 and 23.

Proof (of Theorem 8): Consider problem (16). By com-
bining Propositions 20 and 23, we can obtain the global solution
sensitivity with respect to both a and b as defined by (17).
Consider any given (a, b) and (a′, b′) that satisfy 1Ta ≥ b and
1Ta′ ≥ b′. Without loss of generality, we assume that 1Ta′ ≥
1Ta, so that 1Ta′ ≥ b; this implies that the corresponding
optimization problem (16) is feasible, and the optimal solution
x∗(a′, b) is well-defined. Then, we have

‖x∗(a′, b′)− x∗(a, b)‖1
= ‖x∗(a′, b′)− x∗(a′, b) + x∗(a′, b)− x∗(a, b)‖1
≤ ‖x∗(a′, b′)− x∗(a′, b)‖1 + ‖x∗(a′, b)− x∗(a, b)‖1
≤ ‖b′ − b‖1 + 2‖a′ − a‖1. (25)

By letting x0 = r0, a = r̄i, and b = Ei, we can map problem
(16) back to problem (15). Recall that x∗ is defined as the
optimal solution of problem (16) for a given x0. Then, the
inequality (25) implies that for any given r, the �2-sensitivity

Δr ≤ 2‖r̄′i − r̄i‖1 + ‖E′
i − Ei‖1 = 2δr + δE.

However, since the right-hand side of the above inequality does
not depend on r, we have

Δ = max
r∈RT

Δr ≤ 2δr + δE

which completes the proof. �
Remark 24: Alternatively, one may use the fact ΠCi(·) ∈ Ci

to obtain a bound on Δ. Recall that for any ri ∈ Ci we have

‖ri‖ ≤ ‖r̄i‖ and ‖ri‖ ≤ ‖r̂‖1 = Ei.

Then, we have

Δ ≤ max
i∈[n]

(‖r̄i‖+ ‖r̄′i‖) ≤ 2max
i∈[n]

‖r̄i‖+ δr

Δ ≤ max
i∈[n]

(Ei + E′
i) ≤ 2max

i∈[n]
Ei + δE.

However, this bound can be quite loose in practice. Since the
magnitude of wk in Algorithm 2 is proportional to Δ, a loose
bound on Δ implies introducing more noise to the gradient p(k)

than what is necessary for preserving ε-differential privacy. As
we have already seen in Section VI-D, the noise magnitude is
closely related to the performance loss of Algorithm 2 caused
by preserving privacy, and less noise is always desired for
minimizing such a loss.

D. Revisited: Suboptimality Analysis

The bound (14) given by Corollary 16 does not clearly
indicate the dependence of suboptimality on the number of
participating users n, because ρ, G, and L also depend on n.
In order to reveal the dependence on n, we will further refine
the suboptimality bound (14) for the specific objective function
U given in (7). The resulting suboptimality bound is shown in
Corollary 9.
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Proof (of Corollary 9): Define rmax = maxi∈[n] ‖ri‖.
Then, we have ρ ≤

√
nrmax. For U given by (7), its gradient

can be computed as

∇U

(
n∑

i=1

ri

)
=

1

m

(
d+

n∑
i=1

ri
m

)

so that ∥∥∥∥∥∇U

(
n∑

i=1

ri

)∥∥∥∥∥ ≤ 1

m

(
‖d‖+

n∑
i=1

‖ri‖/m
)
.

Then we obtain

G := max

{∥∥∥∥∥∇U

(
n∑

i=1

ri

)∥∥∥∥∥ : ri ∈ Ci, i ∈ [n]

}
.

≤ 1

m
(‖d‖+ nrmax/m)

=
γ

n
(‖d‖+ γrmax) .

In order to compute the Lipschitz constant L for ∇U , note that
for any x, y ∈ R

T , we have

‖∇U(x)−∇U(y)‖ =
1

m

∥∥∥ x

m
− y

m

∥∥∥ =
1

m2
‖x− y‖

so that we obtain L = 1/m2 = γ2/n2. Substitute ρ, G, and
L into (14) to obtain (11). Note that we have dropped the
dependence on d, rmax, and γ for brevity, since we are most
interested in the relationship between suboptimality and (n, ε).

�
The suboptimality bound (11) indicates how performance

(cost) is affected by incorporating privacy. As ε decreases, the
level of privacy is elevated but at the expense of sacrificing
performance as a result of increased suboptimality. This in-
crease in suboptimality can be mitigated by introducing more
participating users (i.e., by increasing n) as predicted by the
bound (11); this coincides with the common intuition that it is
easier to achieve privacy as the number of users n increases
when only aggregate user information is available. Indeed, in
the distributed EV charging algorithm, the gradients p(k) is a
function of the aggregate load profile

∑n
i=1 r

(k)
i .

VII. NUMERICAL SIMULATIONS

We consider the cost function as given by (7). The base
load d is chosen according to the data provided in Gan et al.
[13]. The scheduling horizon is divided into 52 time slots of
15 min. We consider a large pool of EVs (n = 100 000) in a
large residential area (m = 500 000). For computational effi-
ciency, instead of assigning a different charging specification
(r̄i, Ei) to every user i ∈ [n], we divide the users into N
(N � n) groups and assign the same charging specification
for every user in the same group. If we choose the same initial
conditions r

(1)
i for all users in the same group, the projected

gradient descent update (step 3, Algorithm 2) becomes identical
for all users in the group, so that the projection ΠCi only needs
to be computed once for a given group. We choose N = 100
and draw (r̄j , Ej) for all j ∈ [N ] as follows. The entries of r̄j
are drawn independently from a Bernoulli distribution, where

Fig. 1. Typical output of the differentially private distributed EV charging
algorithm (Algorithm 2) with ε = 0.1 compared to the optimal solution of
problem (2). The other parameters used in the simulation are K = 6 and
c = 10.

r̄j(t) = 3.3 kW with probability 0.5 and r̄j(t) = 0 kW with
probability 0.5. The amount of energy Ej is drawn from the
uniform distribution on the interval [28, 40] (kW). Note that Ej

has been normalized against ΔT = 0.25 h to match the unit of
r̄j ; in terms of energy required, this implies that each vehicle
needs an amount between [28, 40]kW × 0.25 h = [7, 10] kWh
by the end of the scheduling horizon.

The constants δr and δE in the adjacency relation (8) are
determined as follows. We choose δr = 3.3× 4 = 13.2 kW, so
that the privacy of any events spanning less than 4 time slots
(i.e., 1 h) can be preserved; we choose δE = 40− 28 = 12 kW,
which corresponds to the maximum difference in Ej (j ∈ [N ])
as Ej varies between the interval [28,40] (kW). The other
parameters in Algorithm 2 are chosen as follows: L = 1/m2

(as computed in Section VI-D), η = 1, whereas ε, K , and c will
vary among different numerical experiments.

Fig. 1 plots a typical output from Algorithm 2 with ε = 0.1,
alongside the optimal solution of problem (2). The dip at t = 34
that appears both in the differentially private solution and the
optimal solution is due to the constraint imposed by r̄i(t). Be-
cause of the noise introduced in the gradients, the differentially
private solution given by Algorithm 2 exhibits some additional
fluctuations compared to the optimal solution. The constant c
that determines the step sizes is found to be insensitive for
c ∈ [10, 20] as shown in Fig. 2, so that we choose c = 10 in
all subsequent simulations. In Fig. 2, the relative suboptimality
is defined as [U(

∑n
i=1 r̂

(K+1)
i )− U ∗]/U ∗, which is obtained

by normalizing the suboptimality against U ∗.
Fig. 3 shows the relative suboptimality as a function of K .

It can be seen from Fig. 3 that an optimal choice of K exists,
which coincides with the result of Theorem 7.

Fig. 4 shows the dependence of the relative suboptimality
on ε. A separate experiment for investigating the dependence
on n is not performed, since changing n is expected to have a
similar effect as changing ε according to Corollary 9. As the
privacy requirement becomes less stringent (i.e., as ε grows),
the suboptimality of Algorithm 2 improves, which coincides
qualitatively with the bound given in Corollary 9. One can
quantify the relationship between the suboptimality and ε from
the slope of the curve in Fig. 4; if the slope is s, then the
relationship between the suboptimality and ε is given by O(εs).
By performing linear regression on the curve in Fig. 4, we
can obtain the slope as s ≈ −0.698, which is in contrast to
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Fig. 2. Relative suboptimality of the differentially private distributed EV
charging algorithm (Algorithm 2) as a function of the step size constant
c. The other parameters used in the simulations are ε = 0.1 and K = 6.

Fig. 3. Relative suboptimality of the differentially private distributed EV
charging algorithm (Algorithm 2) as a function of the number of iterations
K. The other parameters used in the simulations are ε = 0.1 and c = 10.

Fig. 4. Relative suboptimality of Algorithm 2 as a function of ε.
Larger ε implies that less privacy is preserved. The slope is approxi-
mately −0.698 (compared to the theoretical bound −0.25 as given by
Corollary 9). All simulations use c = 10. The number of iterations K is
optimized for every choice of ε.

−0.25 given by Corollary 9. This implies that the subopti-
mality of Algorithm 2 decreases faster than the rate given by
Corollary 9 as ε increases. In other words, the bound given by
Corollary 9 is likely to be loose; this is possibly due to the
fact that the result on the suboptimality of stochastic gradient

descent (Proposition 14) does not consider additional properties
of the objective function such as strong convexity.

VIII. CONCLUSION

This paper develops an ε-differentially private algorithm for
distributed constrained optimization. The algorithm preserves
privacy in the specifications of user constraints by adding noise
to the public coordination signal (i.e., gradients). By using the
sequential adaptive composition theorem, we show that the
noise magnitude is determined by the sensitivity of the projec-
tion operation ΠC , where C is the parameterized set describing
the user constraints. By viewing the projection operation as a
least-squares problem, we are able to compute the sensitivity
of ΠC through a solution sensitivity analysis of optimization
problems. We demonstrate how this sensitivity can be computed
in the case of EV charging.

We also analyze the trade-off between privacy and per-
formance of the algorithm through results on suboptimality
analysis of the stochastic gradient descent method. Specifically,
in the case of EV charging, the expected suboptimality of the
ε-differentially private optimization algorithm with n partic-
ipating users is upper bounded by O((nε)−1/4). For achiev-
ing the best suboptimality, both the suboptimality analysis
and numerical simulations show that there exists an optimal
choice for the number iterations: too few iterations affects the
convergence behavior, whereas too many iterations leads to
too much noise in the gradients. Simulations have indicated
that the bound O((nε)−1/4) is likely not tight. One future
direction is to derive a tighter bound for similar distributed
optimization problems using information-theoretic approaches
(e.g., [8], [23]). We have also found that it is not straightforward
to extend the same techniques to other optimization algorithms
beyond the gradient descent method, which makes designing
other differentially private optimization algorithms a valuable
and interesting future research direction.

APPENDIX I
PROOF OF LEMMA 13

Consider any adjacent D and D′ such that Cj = C′
j for

all j �= i. We will first show that when the outputs of
p̂(1), p̂(2), . . . , p̂(k−1) are given, we have∥∥∥r(k)i (D′)− r

(k)
i (D)

∥∥∥ ≤ (k − 1)Δ

∥∥∥r(k)j (D′)− r
(k)
j (D)

∥∥∥ =0, ∀j �= i.

We will prove the above result by induction. For k = 1, we have
‖r(1)i (D′)− r

(1)
i (D)‖ = 0 for all i ∈ [n].

Consider the case when k > 1. For notational convenience,
we define for i ∈ [n]

v
(k−1)
i (D) := r

(k−1)
i (D)− αk−1p̂

(k−1). (26)

In (26), we have used the fact that the output of p̂(k−1) is given
so that the dependence of p̂(k−1) on D is dropped according to
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the adaptive sequential composition theorem (Proposition 12).
Then, for all j �= i, we have∥∥∥r(k)j (D′)− r

(k)
j (D)

∥∥∥
=

∥∥∥ΠC′
j

(
v
(k−1)
j (D′)

)
−ΠCj

(
v
(k−1)
j (D)

)∥∥∥
=

∥∥∥ΠCj

(
v
(k−1)
j (D′)

)
−ΠCj

(
v
(k−1)
j (D)

)∥∥∥
≤

∥∥∥v(k−1)
j (D′)− v

(k−1)
j (D)

∥∥∥
=

∥∥∥r(k−1)
j (D′)− r

(k−1)
j (D)

∥∥∥ = 0∥∥∥r(k)i (D′)− r
(k)
i (D)

∥∥∥
=

∥∥∥ΠC′
i

(
v
(k−1)
i (D′)

)
−ΠCi

(
v
(k−1)
i (D)

)∥∥∥
≤

∥∥∥ΠC′
i

(
v
(k−1)
i (D′)

)
−ΠCi

(
v
(k−1)
i (D′)

)∥∥∥
+

∥∥∥ΠCi

(
v
(k−1)
i (D′)

)
−ΠCi

(
v
(k−1)
i (D)′

)∥∥∥
≤ Δ+

∥∥∥v(k−1)
i (D′)− v

(k−1)
i (D)

∥∥∥
= Δ+

∥∥∥r(k−1)
i (D′)− r

(k−1)
i (D)

∥∥∥ ≤ (k − 1)Δ

where we have used the induction hypothesis∥∥∥r(k−1)
i (D′)− r

(k−1)
i (D)

∥∥∥ ≤ (k − 2)Δ∥∥∥r(k−1)
j (D′)− r

(k−1)
j (D)

∥∥∥ =0, ∀j �= i.

Then, the �2-sensitivity of p(k) can be computed as follows:∥∥∥p(k)(D′)− p(k)(D)
∥∥∥

≤ L

∥∥∥∥∥
n∑

i=1

[
r
(k)
i (D′)− r

(k)
i (D)

]∥∥∥∥∥ ≤ L(k − 1)Δ.

Since the above results hold for all i such that D and D′ satisfy
Cj = C′

j for all j �= i, we have

Δ(k) := max
D,D′:Adj(D,D′)

∥∥∥p(k)(D′)− p(k)(D)
∥∥∥

= max
i∈[n]

max
{∥∥∥p(k)(D′)− p(k)(D)

∥∥∥ : D,D′ satisfy

Cj = C′
j for all j �= i

}
=L(k − 1)Δ.

APPENDIX II
PROOFS ON THE LOCAL SOLUTION SENSITIVITIES

A. Proof of Lemma 18

The Lagrangian of problem (16) can be written as

L(x, λ, μ, ν) =
1

2
‖x−x0‖2−λTx+ μT (x−a) + ν(b− 1Tx).

(27)

Denote by λ∗, μ∗, and ν∗ the corresponding optimal Lagrange
multipliers. It can be verified that all conditions in
Proposition 17 hold. Apply Proposition 17 to obtain

∂bx
∗ − ∂bλ

∗ + ∂bμ
∗ − ∂bν

∗ · 1 =0 (28)

1T∂bx
∗ =1 (29)

λ∗
i · ∂bx∗

i + x∗
i · ∂bλ∗

i =0, i ∈ [T ] (30)

μ∗
i · ∂bx∗

i + (x∗
i − ai) · ∂bμ∗

i =0, i ∈ [T ]. (31)

Strict complementary slackness implies that either: 1) x∗
i = 0

and λ∗
i > 0, so that ∂bx∗

i = 0 according to (30) or 2) x∗
i �= 0

and λ∗
i = 0, so that ∂bλ∗

i = 0 also according to (30). In other
words, under strict complementary slackness, condition (30) is
equivalent to

∂bλ
∗
i · ∂bx∗

i = 0. (32)

Similarly, we can rewrite condition (31) as

∂bμ
∗
i · ∂bx∗

i = 0. (33)

Conditions (32) and (33) imply that one and only one of the
following is true for any i ∈ [T ]: 1) ∂bx∗

i = 0 and 2) ∂bλ∗
i = 0

and ∂bμ
∗
i = 0. Define I := {i : ∂bx∗

i �= 0}, and we have∑
i∈I

∂bx
∗
i = 1 (34)

from (29). Note that (28) implies that for all i, j ∈ [T ]

∂bx
∗
i − ∂bλ

∗
i + ∂bμ

∗
i = ∂bx

∗
j − ∂bλ

∗
j + ∂bμ

∗
j .

Since ∂bλ
∗
i = 0 and ∂bμ

∗
i = 0 for all i ∈ I, we have ∂bx

∗
i =

∂bx
∗
j for all i, j ∈ I and hence ∂bx

∗
i = 1/|I| for all i ∈ I

according to (34). On the other hand, from the definition of I,
we have ∂bx∗

i = 0 for all i �∈ I. In summary, we have ∂bx∗ � 0,
which completes the proof.

B. Proof of Lemma 19

The optimality conditions for problem (16) imply that

x∗ − λ∗ + μ∗ − ν∗1 =x0 (35)

1Tx∗ = b (36)

λ∗
ix

∗
i =0, i ∈ [T ] (37)

μ∗
i (x

∗
i − ai) = 0, i ∈ [T ]. (38)

Suppose strict complementary slackness fails for a certain
value of b. Denote the set of indices of the constraints that
violate strict complementary slackness by Iλ := {i : λ∗

i =
0, x∗

i = 0} and Iμ := {i : μ∗
i = 0, x∗

i = ai}. If both Iλ and
Iμ are empty, then strict complementary slackness holds for all
constraints.
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Proof: When Iλ is nonempty, we know from (38) that
μ∗
i = 0 for all i ∈ Iλ. For any i ∈ Iλ, substitute x∗

i = 0, λ∗
i =

0, and μ∗
i = 0 into (35) to obtain ν∗ = x0,i. For any other j �∈

Iλ, one of the following three cases must hold: 1) x∗
j = 0; 2)

x∗
j = aj ; or 3) 0 < x∗

j < aj . Consider a partition (I1, I2, I3)
of the set [n] \ Iλ as follows:

I1 :=
{
j : x∗

j = 0
}
, I2 :=

{
j : x∗

j = aj
}

I3 :=
{
j : 0 < x∗

j < aj
}
.

For any j ∈ I3, we have λ∗
j = μ∗

j = 0 from (30) and (31), so
that we have x∗

j = ν∗ + x0,j according to (28). Then, we can
write using (36)

b =1Tx∗

=
∑
i∈Iλ

x∗
i +

∑
j∈I1

x∗
j +

∑
j∈I2

x∗
j +

∑
j∈I3

x∗
j

= |Iλ|ν∗ + 0 +
∑
j∈I2

aj +
∑
j∈I3

(ν∗ + x0,j). (39)

Since both a and x0 are fixed, we know that the choice of ν∗ =
x0,i (for any i ∈ Iλ) is finite. By enumerating all finitely many
partitions (Iλ, I1, I2, I3) of [T ], we know that b can only take
finitely many values according to (39). The proof is similar for
the case when Iμ is nonempty by making use of (37). When
both Iλ and Iμ are nonempty, the possible values of b are given
by the intersection of those when only one of Iλ and Iμ are
empty; hence the number of possible values is also finite. �

C. Proof of Lemma 21

Similar to the proof of Lemma 18, we apply Proposition 17
using the Lagrangian as given by (27). We can show that the
following holds for all i ∈ [T ]:

∂ai
x∗
i − ∂ai

λ∗
i + ∂ai

μ∗
i − ∂ai

ν∗ =0 (40)

∂aj
x∗
i − ∂aj

ν∗ =0, ∀j �= i (41)

λ∗
i∂aj

x∗
i + x∗

i∂aj
λ∗
i =0, ∀j ∈ [T ] (42)

μ∗
i∂aj

x∗
i + (x∗

i − ai) ∂aj
μ∗
i − μ∗

i =0 (43)

μ∗
i∂aj

x∗
i + (x∗

i − ai) ∂aj
μ∗
i =0, ∀j �= i (44)

n∑
j=1

∂ai
x∗
j =0. (45)

From (40) and (41), we know that the following holds for all i:

∂ai
ν∗ = ∂ai

x∗
i − ∂ai

λ∗
i + ∂ai

μ∗
i = ∂ai

x∗
j , ∀j �= i. (46)

The first equality in (46) implies that there exists a constant Ci

such that ∂ai
x∗
j = Ci for all j �= i. Then, we can rewrite (45) as

∂ai
x∗
i + (T − 1)Ci = 0, ∀i ∈ [T ] (47)

which implies that

‖∂ai
x∗‖1 =

T∑
j=1

∣∣∂ai
x∗
j

∣∣ = |∂ai
x∗
i |+

∑
j �=i

∣∣∂ai
x∗
j

∣∣
=2(T − 1)|Ci|. (48)

Suppose strict complementary slackness holds. Then, for any
i ∈ [T ], only one of the three following cases holds:

1) x∗
i = 0, λ∗

i > 0, μ∗
i = 0;

2) x∗
i = ai, λ∗

i = 0, μ∗
i > 0;

3) 0 < x∗
i < ai, λ∗

i = 0, μ∗
i = 0.

In the following, we will derive the expression of ‖∂ai
x∗‖1 for

the three cases separately:

1) x∗
i = 0, λ∗

i > 0, μ∗
i = 0:

Using (42), we obtain ∂aj
x∗
i = 0 for all j ∈ [T ]; in partic-

ular, this implies ∂ai
x∗
i = 0. Substituting ∂ai

x∗
i = 0 into

(47), we obtain Ci = 0, so that ‖∂ai
x∗‖1 = 0 according

to (48).
2) x∗

i = ai, λ∗
i = 0, μ∗

i > 0:
Using (43), we obtain ∂ai

x∗
i = 1; substitute this into

(47) to obtain Ci = −(1/(T − 1)), so that we have
‖∂ai

x∗‖1 = 2 according to (48).
3) 0 < x∗

i < ai, λ∗
i = 0, μ∗

i = 0:
Using (42)–(44), we obtain ∂aj

λ∗
i = ∂aj

μ∗
i = 0 for all

j ∈ [T ]; in particular, this implies ∂ai
λ∗
i = ∂ai

μ∗
i = 0.

Then, using (46), we have ∂ai
x∗
i = Ci; substitute this into

(47) to obtain Ci = 0, so that ‖∂ai
x∗‖1 = 0 according

to (48).

For case 2 in the above, the fact that ∂ai
x∗
j = Ci = −(1/(T −

1)) �= 0 for all j �= i also implies that x∗
j �= aj for all j �= i.

Otherwise, the fact x∗
j = aj would imply μ∗

j > 0 as a result of
strict complementary slackness. According to (44), we have

μ∗
j∂ai

x∗
j +

(
x∗
j − aj

)
∂ai

μ∗
j = 0, ∀i �= j

so that μ∗
j > 0 would imply ∂ai

x∗
j = 0, which causes a contra-

diction. To summarize, there exists at most one i ∈ [T ] such that
‖∂ai

x∗‖1 = 2 (i.e., case 2 holds), whereas for other j �= i we
have ‖∂aj

x∗‖
1
= 0 (i.e., either case 1 or 3 holds). This implies

that
∑T

j=1 ‖∂aj
x∗‖

1
≤ 2, which completes the proof.

D. Proof of Lemma 22

Define Iμ = {i : μ∗
i = 0, x∗

i = ai}. If Iμ is empty, then
strict complementary slackness for the constraint x � a holds.
For any i ∈ Iμ, we have ν∗ = ai − x0,i and λ∗

i = 0 according
to (35) and (37). For any other j �∈ Iμ, one of the following
three cases must hold: 1) x∗

j=0; 2) x∗
j=aj; or 3) 0<x∗

j<aj .
The last case implies that λ∗

j = μ∗
j = 0, so that we have x∗

j =
ai − x0,i + x0,j , where i ∈ Iλ. Since both b and x0 are fixed,
and only one ai among all i ∈ [T ] is allowed to change due to
the constraint imposed by the integration path L, we can use
a similar argument as the one in the proof of Lemma 19 to
conclude that there are finitely many values of a along L such
that the constraint b = 1Tx∗ is satisfied.
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